

# Описание функциональности встроенного программного обеспечения firmware version 2.04 для устройств серии PING3

# Equicom \_\_\_\_\_

### Оглавление

| 1 Общие сведения                                         | 4  |
|----------------------------------------------------------|----|
| 2 Авторизация и администрирование                        | 5  |
| 2.1 WEB интерфейс                                        | 5  |
| 2.2 Telnet                                               | 7  |
| 2.2.1 Общие сведения                                     | 7  |
| 2.2.2 Получение суммарной информации об устройстве       | 8  |
| 3 Системные настройки                                    | 9  |
| 3.1 WEB интерфейс                                        | 10 |
| 3.2 Telnet                                               | 11 |
| 3.3 SNMP                                                 | 11 |
| 4 Реализация протокола SNMP                              |    |
| 4 1 Общие свеления                                       | 13 |
| 4 2 ТВАР сообщения                                       | 13 |
| 4 2 1 Obsop                                              | 13 |
| 4.2.2 Структура Тгар сообщений                           |    |
| 4.3 Настройки SNMP                                       |    |
| 4.3.1 WEB интерфейс                                      |    |
| 4.3.2 Telnet                                             |    |
| 4.3.3 SNMP                                               |    |
| 5 Поддержка IEEE 802.1Q VLAN                             | 17 |
| 6 Цифровые линии ввода/вывода                            |    |
| 6.1 Web интерфейс                                        |    |
| 6 2 Telnet                                               | 20 |
| 6.3 SNMP                                                 | 22 |
| 7 Анапоговые вхолы                                       | 23 |
| 7 1 WFB интерфейс                                        | 24 |
| 7 2 Telnet                                               | 25 |
| 7.3 SNMP                                                 | 26 |
| 7 4 Рекоменлации по капибровке входов                    | 27 |
| 7.4.1 Спучай прямо пропорциональной зависимости          |    |
| 7.4.2 Общий случай линейной зависимости                  |    |
| 8 Канапы управления питанием                             | 29 |
| 8 1 Общие настройки выбор режима                         | 30 |
| 8.1.1 WEB интерфейс                                      |    |
| 8.1.2 Telnet                                             |    |
| 8.1.3 SNMP                                               |    |
| 8.2 Режим Ping Mode                                      |    |
| 8.2.1 WEB интерфейс                                      |    |
| 8.2.2 Telnet                                             | 35 |
| 8.2.3 SNMP                                               |    |
| 8.3 Режим Analog Mode                                    | 38 |
| 8.3.1 WEB интерфейс                                      |    |
| 8.3.2 Telnet                                             |    |
| 8.3.3 SNMP                                               | 41 |
| 9 Вход Power Sensor – контроль наличия напряжения в сети | 42 |
| 9.1 Web интерфейс                                        | 42 |
| 9.2 Telnet                                               | 43 |
| 9.3 SNMP                                                 | 43 |
| 10 Датчик удара (knock-сенсор)                           | 44 |
| 10.1 Web интерфейс                                       | 44 |
| 10.2 Telnet                                              | 45 |
| 10.3 SNMP                                                | 45 |
| 11 Вспомогательные функции                               | 46 |
|                                                          |    |

# \_ Equicom

| 11.1 Общий вид меню «Tools»                                    |                     |
|----------------------------------------------------------------|---------------------|
| 11.1.1 WEB интерфейс                                           | 46                  |
| 11.1.2 Telnet                                                  |                     |
| 11.2 Ручная отправка ICMP запросов                             |                     |
| 11.2.1 WEB интерфейс                                           | 47                  |
| 11.2.2 Telnet                                                  | 47                  |
| 11.3 Перезагрузка устройства                                   |                     |
| 11.3.1 WEB интерфейс                                           |                     |
| 11.3.2 Telnet                                                  |                     |
| 11.3.3 SNMP                                                    |                     |
| 11.4 Восстановление заводских настроек                         |                     |
| 11.4.1 WEB интерфейс                                           |                     |
| 11.4.2 Telnet                                                  |                     |
| 11.4.3 Процедура восстановления заводских настроек при помош   | ци кнопки «Reset»49 |
| 11.5 Сохранение настроек в файл конфигурации и загрузка из ф   | айла 50             |
| 11.6 Обновление встроенного ПО (firmware)                      |                     |
| 11.6.1 Процедура обновления firmware                           |                     |
| 11.6.2 Инструкция по обновлению firmware с любой из версий 1.х | х до версии 2.хх52  |
| 12 Гарантийные обязательства                                   |                     |
| 1                                                              |                     |

## Equicom \_\_\_\_

### 1 Общие сведения

Описанная в данном документе версия программного обеспечения (ПО) подходит для всех устройств серии PING3. В зависимости от конкретной модели устройства могут быть задействованы те или иные компоненты ПО, а также может отличаться количество используемых внешних линий. Подробную информацию смотрите в документации к конкретной модели устройства.

### Основные возможности ПО

- Настраиваемые статический IP адрес, MAC адрес, маска подсети, шлюз
- Двусторонний обмен данными по сети Ethernet, поддержка протокола ARP
- Поддержка тегов IEEE 802.1Q VLAN
- Удаленный контроль и управление через WEB интерфейс, Telnet, SNMP v1, v2c
- Ответ на ICMP запросы (Ping) с поддержкой фрагментации пакетов, максимальная длина пакета 5912 байт
- Отправка ICMP запросов (Ping) с поддержкой фрагментации пакетов, максимальная длина пакета 65535 байт; наблюдение в реальном времени процента потерь пакетов и времени отклика
- Поддержка цифровых линий I/O для подключения внешних датчиков или исполнительных устройств
- Поддержка аналоговых линий (входы 10-битного АЦП)
- Поддержка каналов управления питанием внешних устройств. Возможные режимы работы каналов:
  - Ping mode контроль доступности до 3-х IP адресов и выключение (либо включение) питания нагрузки на заданный интервал времени при пропадании связи (задание различных логических функций для анализа ответов от каждого IP адреса, гибкая настройка параметров отправляемых ICMP пакетов для каждого адреса)
  - Analog mode управление питанием нагрузки в зависимости от напряжения на выбранном аналоговом входе (выше или ниже границы, либо нахождение в диапазоне значений)
  - Ручной режим
- Поддержка входа Power Sensor для контроля наличия напряжения в сети
- Поддержка датчика удара (knock-сенсора)
- Отправка SNMP трапов v2c с возможностью подтверждения по четырем заданным адресам при наступлении любых событий, связанных с функционированием устройства
- Две учетные записи пользователей с возможностью смены пароля
  - Admin полный контроль над всеми функциями
  - User только наблюдение за состоянием устройства
- Ограничение административного доступа (2 разрешенных диапазона IP адресов)
- Удаленное обновление ПО (firmware)
- Сброс всех настроек к начальным значениям при помощи кнопки Reset, либо удаленно через интерфейс пользователя
- Сохранение всех настроек в файл конфигурации и загрузка из файла

### 2 Авторизация и администрирование

IP адрес устройства по умолчанию – 192.168.2.200

Для административного доступа к устройству PING3 имеется две предопределенные учетные записи пользователя.

1. Пользователь с правами администратора (полный доступ ко всем функциям устройства)

Имя: admin Пароль: admin

2. Пользователь с ограниченными правами (только наблюдение за состоянием устройства)

Имя: user

Пароль: user

Пользователь с правами администратора имеет возможность изменить пароли обеих учетных записей, но их имена изменить невозможно.

Имеются следующие способы администрирования системы: WEB интерфейс, Telnet, SNMP. Большинство функций администрирования доступны при помощи каждого из этих способов, однако есть некоторые отличия, перечисленные в следующей таблице:

| Функция                                                          | WEB интерфейс | Telnet | SNMP |
|------------------------------------------------------------------|---------------|--------|------|
| Ручная отправка ІСМР запросов                                    | +             | +      | -    |
| Ручная отправка тестовых SNMP<br>TRAP пакетов                    | +             | +      | -    |
| Изменение настроек<br>IP, Mask, Gateway, MAC                     | +             | +      | -    |
| Изменение паролей пользователей и SNMP Community string          | +             | +      | -    |
| Сброс всех настроек к значениям по<br>умолчанию                  | +             | +      | -    |
| Сохранение всех настроек в файл конфигурации и загрузка из файла | +             | -      | -    |
| Обновление firmware                                              | -             | +      | -    |
| Все остальные функции                                            | +             | +      | +    |

### 2.1 WEB интерфейс

Для корректного отображения страниц рекомендуется использовать Интернет браузеры версий, выпущенных не ранее 2009 г.

Для подключения по протоколу http используется стандартный tcp порт 80. Количество пользователей, одновременно работающих с устройством по протоколу http, не ограничено.

При помощи Интернет браузера зайдите на IP адрес устройства PING3 (по умолчанию 192.168.2.200). Будет выдан запрос авторизации:

## Equicom \_\_\_\_\_

| <b>(</b> ) 192.168.2.200    |       |        |
|-----------------------------|-------|--------|
| Этот сайт просит вас войти. |       |        |
| Имя пользователя            |       |        |
| admin                       |       |        |
| Пароль                      |       |        |
| •••••                       |       |        |
|                             | Войти | Отмена |
|                             |       |        |

Данные по умолчанию для входа с правами администратора:

#### Пользователь: admin Пароль: admin

После успешной авторизации будет открыта страница системных настроек:

| Ping3                                                       |                                                                                         | × +                                                                             |                                   |                     |              |                    |        | -  |     | כ            | ×  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------|---------------------|--------------|--------------------|--------|----|-----|--------------|----|
| $\widehat{\ } \leftrightarrow \ \rightarrow \ \widehat{\ }$ | C 🗘 🗞 192.                                                                              | 168.2.200                                                                       |                                   |                     | ☆            | $\bigtriangledown$ | ⊻ 🖺    | 岔  | ₽   | <b>\$</b>    | ≡  |
| Ping3                                                       |                                                                                         |                                                                                 |                                   |                     |              |                    |        |    |     |              |    |
| <u>System</u>                                               | <u>SNMP</u> Pov                                                                         | ver Channels                                                                    | Digital Lines                     | Analog Lines        | Knock Sensor | Power              | Sensor | To | ols | <u>Ex</u>    | it |
| HTT<br>Teln                                                 | Ping3 s/n:<br>Firmware version:<br>Uptime:<br>IP connected from:<br>tet connected from: | 032265534<br>*.** - 20**/**/**<br>0 days, 0 hours, 50<br>192.168.2.2:49873<br>- | 0 min, 54 sec<br>8, MAC: C8:0A:A9 | :1C:BD:BF           |              |                    |        |    |     |              |    |
| 1                                                           | Device Name:<br>Device Description:                                                     |                                                                                 |                                   |                     |              |                    |        |    | 5   | Save         |    |
|                                                             | My IP:                                                                                  | 192.168.2.200                                                                   | Mask: 255.255.2                   | 255.0 Gateway:      | 0.0.0.0      |                    |        |    | 5   | Save         |    |
|                                                             | My MAC:                                                                                 | 00:BB:10:30:FF:FE                                                               | E                                 |                     |              |                    |        |    | 9   | Save         |    |
|                                                             | Enable VLAN:                                                                            | □ VID: 0                                                                        | (04095) Priority                  | : 0 (07)            |              |                    |        |    | 5   | Save         |    |
|                                                             | Allowed IP ranges:                                                                      | 0.0.0.0                                                                         | - 255.255.255.<br>- 255.255.255.2 | 255                 |              |                    |        |    | 5   | Save         |    |
|                                                             | New Password:                                                                           | admin: •<br>user: •                                                             |                                   | confirm password: o | •            | ]                  |        |    | 9   | Save<br>Save |    |

Каждый из пунктов верхней строки меню открывает страницу настроек соответствующей функции устройства. Подробное описание см. в разделах по каждой конкретной функции.

Пункт «Exit» - выход из системы.

Кроме собственно настроек, на данной странице отображается:

Ping3 s/n - название модели и серийный номер устройства

Firmware version – номер версии и дата разработки встроенного ПО

Uptime – время работы с момента включения или последней перезагрузки

**HTTP connected from** – IP адрес, MAC адрес и номер порта, с которого произведено текущее подключение по протоколу HTTP

**Telnet connected from** – IP адрес, MAC адрес и номер порта, с которого произведено текущее подключение по протоколу Telnet

На каждой странице может быть одна или несколько кнопок «Save» - сохранение одного параметра или группы параметров. Закончив редактирование нужного параметра (или группы параметров), нажмите соответствующую им кнопку «Save» или клавишу Enter на клавиатуре.

Также на большинстве страниц имеется кнопка «Cancel» - отмена всех изменений, сделанных на данной странице (до их сохранения).

#### Замечание

Будьте внимательны: параметры необходимо изменять и сохранять последовательно. Если изменить несколько параметров, каждый из которых имеет собственную кнопку «Save», а затем сохранить один из них, то изменения всех остальных параметров будут потеряны. В некоторых случаях введенные значения можно восстановить, нажав кнопку браузера «Возврат к предыдущей странице».

#### 2.2 Telnet

#### 2.2.1 Общие сведения

Таблица совместимости некоторых Telnet клиентов под OC Windows с устройством PING3:

| Telnet клиент                                               | Совместимость          |  |
|-------------------------------------------------------------|------------------------|--|
| PuTTY v0.76 – рекомендуется для использования               |                        |  |
| (www.chiark.greenend.org.uk/~sgtatham/putty/download.html)  | OK                     |  |
| ShellGuard v3.46                                            | <b>UK</b>              |  |
| Hyper Terminal v5.1 build 2600 (Windows XP SP2 x32)         |                        |  |
| Hyper Terminal v5.2 build 3790 (Windows XP SP2 x64)         |                        |  |
| Hyper Terminal v7.0 Privat Edition (Windows 7 Ultimate x64) | Проблани               |  |
| Штатный Telnet                                              |                        |  |
| (Windows XP SP2 x32, x64; Windows 7 Ultimate x64;           | при обновлении ппп аге |  |
| Windows 10 Pro x64)                                         |                        |  |

Под другими ОС проблем не замечено.

Одновременно возможно только одно подключение к устройству по протоколу Telnet.

При помощи Telnet клиента зайдите на IP адрес устройства PING3 (по умолчанию 192.168.2.200). Будет выдан запрос авторизации:



# Equicom \_\_\_\_\_

Данные по умолчанию для входа с правами администратора:

Login: admin Password: admin

После успешной авторизации на экран будет выведено основное меню устройства:

Ping3 s/n: 011100001, ver.\*.\*\* - 20\*\*/\*\*/\*\* Copyright (c) 2011-2022, EQUICOM Production Group www.equicom.ua

Main menu

- Select item:
- s System
- n SNMP
- p Power Channels
- d Digital Lines
- a Analog Lines
- k Knock Sensor
- g Power Sensor
- t Tools
- i Info
- e Exit

В заголовке меню отображается серийный номер устройства, номер версии и дата разработки встроенного ПО.

Каждый из пунктов меню вызывается вводом с клавиатуры соответствующего символа (с учетом регистра), в результате происходит переход во вложенное меню с настройками соответствующей функции устройства. Подробное описание настроек см. в разделах по каждой конкретной функции. Пункт «е – Exit» - закрытие сессии Telnet.

Каждое из вложенных меню может в свою очередь содержать подменю более низкого уровня, а также пункты, управляющие вводом и редактированием различных параметров устройства. В любом подменю интерфейса Telnet действуют следующие «горячие» клавиши:

<Space> - перерисовать заново текущее меню

<ESC> - переход к меню на один уровень выше

<Home> - переход к начальному меню устройства

В пунктах меню, управляющих вводом и изменением параметров устройства, работает режим редактирования строки. В этом режиме действуют следующие клавиши:

Стрелки  $\leftarrow$   $\rightarrow$  - перемещение курсора по редактируемой строке

<Home> - переход к началу строки

<End> - переход к концу строки

<ESC><ESC> (двойное нажатие) – отмена изменений и возврат в предыдущее меню

<Enter> - окончание редактирования и ввод значения параметра

### 2.2.2 Получение суммарной информации об устройстве

Для получения информации об устройстве служит пункт основного меню «**i** - Info». Это единственный пункт, доступный для пользователя с именем учетной записи user. При входе в данный пункт на экран выводится следующее подменю:

Print device information Select item: f - full device state s - system info p - power channels info d - digital lines info a - analog lines info k - knock sensor state w - power sensor state ESC - return

Каждый из пунктов, начиная со второго, выводит информацию о состоянии конкретной функции устройства. Пункт «**f** - **full device state**» выводит суммарную информацию по всем пунктам. Объем выводимой информации большой и не помещается в рабочее окно большинства Telnet клиентов, тем не менее, данная информация может быть использована для контроля состояния устройства, например, при помощи специально разработанного для этой цели скрипта.

### 3 Системные настройки

Под системными настройками устройства понимаются следующие:

Device Name – имя устройства, максимум 17 символов

Device Description – текстовое описание устройства, максимум 53 символа

MyIP – IP адрес устройства

Mask – маска подсети

Gateway – шлюз (значение 0.0.0.0 означает, что шлюз не указан – в этом случае любые пакеты для подсетей, отличных от подсети устройства PING3, отправляться не будут)

#### МуМАС – МАС адрес устройства

Enable VLAN – признак включения тегов IEEE 802.1Q VLAN. При включении этой опции все отправляемые устройством пакеты снабжаются тегами IEEE 802.1Q VLAN с указанными значениями VID и Priority (см. ниже). Приниматься будут только тегированные пакеты, имеющие значение VID, равное заданному. Все остальные входящие пакеты будут игнорироваться. Подробнее см. в разделе *Поддержка IEEE 802.1Q VLAN* на стр. 17.

VID – идентификатор VLAN'а, допустимы значения в диапазоне от 0 до 4095. Имеет смысл только при включенной опции Enable VLAN. Подробнее см. в разделе *Поддержка IEEE* 802.1Q VLAN на стр. 17.

**Priority** – приоритет передаваемого трафика, допустимы значения в диапазоне от 0 до 7. Имеет смысл только при включенной опции **Enable VLAN**. Подробнее см. в разделе *Поддержка IEEE 802.1Q VLAN* на стр. 17.

Allowed IP ranges – два диапазона IP адресов, с которых разрешен административный доступ к устройству (пустые значения строк не допустимы). Будьте внимательны при задании этих параметров, чтобы не утратить связь с устройством!

Password – пароли для двух учетных записей: admin и user, максимум 14 символов

## Equicom \_\_\_\_\_

### 3.1 WEB интерфейс

> Описание системных настроек находится на стр. 9

Системные настройки находятся в пункте «System» верхней строки меню:

| Ping3                      |                                                                                 | × +                                                                            |                                    |                                        |              |            |              |    | -  |     | ]          | × |
|----------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------|----------------------------------------|--------------|------------|--------------|----|----|-----|------------|---|
| $ \leftarrow \rightarrow $ | C 🔿 🗞 192                                                                       | 2.168.2.200                                                                    |                                    |                                        | ☆            | ${igodot}$ | $\checkmark$ |    | 岔  | ₽   | <b>\$</b>  | ≡ |
| Ping3                      |                                                                                 |                                                                                |                                    |                                        |              |            |              |    |    |     |            |   |
| <u>System</u>              | <u>SNMP</u> Po                                                                  | wer Channels                                                                   | Digital Lines                      | Analog Lines                           | Knock Sensor | Power      | Sens         | or | To | ols | Exi        | t |
| F<br>HTTP<br>Telnet        | Ping3 s/n:<br>irmware version:<br>Uptime:<br>connected from:<br>connected from: | 032265534<br>*.** - 20**/**/**<br>0 days, 0 hours, 5<br>192.168.2.2:4987:<br>- | 0 min, 54 sec<br>3, MAC: C8:0A:A9: | 1C:BD:BF                               |              |            |              |    |    |     |            |   |
| De                         | Device Name<br>evice Description                                                | :                                                                              |                                    |                                        |              |            |              |    |    | S   | Save       |   |
|                            | My IP                                                                           | : 192.168.2.200                                                                | Mask: 255.255.2                    | 55.0 Gateway:                          | 0.0.0.0      |            |              |    |    | S   | Save       |   |
|                            | My MAC                                                                          | : 00:BB:10:30:FF:F                                                             | E                                  |                                        |              |            |              |    |    | 5   | Save       |   |
|                            | Enable VLAN                                                                     | : 🗆 VID: 🛛                                                                     | (04095) Priority:                  | 0 (07)                                 |              |            |              |    |    | S   | Save       |   |
| А                          | llowed IP ranges                                                                | 0.0.0.0                                                                        | - 255.255.255.2<br>- 255.255.255.2 | 55<br>55                               |              |            |              |    |    | 5   | Save       |   |
|                            | New Password:                                                                   | admin: •<br>user: •                                                            |                                    | confirm password:<br>confirm password: | •            |            |              |    |    | s   | ave<br>ave |   |

Параметры объединены в группы, сохранение настроек для каждой группы производится при помощи отдельной кнопки «Save» (см. *замечание* по этому поводу на стр. 7).

После изменения любого из параметров MyIP, Mask, Gateway, MyMAC произойдет перезагрузка устройства. После изменения MAC адреса может потребоваться очистка таблицы ARP компьютера для восстановления связи с устройством.

Для изменения пароля необходимо удалить символ «•», видимый в поле ввода, и ввести новый пароль. Аналогично ввести пароль в соседнем поле для подтверждения и нажать соответствующую кнопку «Save».

### 3.2 Telnet

> Описание системных настроек находится на стр. 9

Системные настройки находятся в пункте «s – System» основного меню. Меню системных настроек выглядит следующим образом:

System settings Select item: n - Device Name: d - Device Description: i - My IP settings: IP: 192.168.2.200/255.255.255.0, Gateway: 0.0.0.0 m - My MAC: 00:BB:10:30:FF:FF l - VLAN: disabled v - VLAN VID: 0 p - VLAN VID: 0 p - VLAN Priority: 0 1 - Allowed IP range1: 0.0.0.0-255.255.255.255 2 - Allowed IP range2: 0.0.0.0-255.255.255.255 a - Admin Password: \* u - User Password: \* ESC - return

Параметры MyIP, Mask, Gateway меняются совместно при помощи отдельного подменю:

New IP: 192.168.2.200 New Mask: 255.255.255.0 New Gateway: 0.0.0.0 Save new parameters Y/N?

После изменения любого из параметров MyIP, Mask, Gateway, MyMAC Telnet сессия будет завершена и произойдет перезагрузка устройства. После изменения MAC адреса может потребоваться очистка таблицы ARP компьютера для восстановления связи с устройством.

При вводе паролей требуется повторный ввод для подтверждения, набираемые символы не отображаются на экране.

### 3.3 SNMP

> Описание системных настроек находится на стр. 9

Список OID, отвечающих за системные настройки (подробнее о протоколе SNMP см. в разделе *Реализация протокола SNMP*, стр. 13):

| OID                     | Имя переменной | Тип данных                     | Доступ | Описание                                                                                                                |
|-------------------------|----------------|--------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------|
| 1.3.6.1.4.1.35160.1.1.0 | deviceInfo     | DisplayString<br>(OctetString) | R      | Текстовая строка, содержит название<br>модели устройства, серийный номер,<br>номер версии и дату разработки<br>firmware |
| 1.3.6.1.4.1.35160.1.2.0 | uptimeSeconds  | Integer32<br>(Integer)         | R      | Время работы устройства в секундах<br>с момента последнего включения или<br>перезагрузки                                |

# Equicom

| 1.3.6.1.4.1.35160.1.3.0     | myIP              | IpAddr<br>(OctetString)        | R   | IP адрес устройства                                                                                                             |
|-----------------------------|-------------------|--------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------|
| 1.3.6.1.4.1.35160.1.4.0     | myMask            | IpAddr<br>(OctetString)        | R   | Маска подсети                                                                                                                   |
| 1.3.6.1.4.1.35160.1.5.0     | myGateway         | IpAddr<br>(OctetString)        | R   | Шлюз                                                                                                                            |
| 1.3.6.1.4.1.35160.1.6.0     | myMAC             | MacAddress<br>(OctetString)    | R   | МАС адрес устройства                                                                                                            |
| 1.3.6.1.4.1.35160.1.7.0     | deviceName        | DisplayString<br>(OctetString) | R/W | Имя устройства, максимум 17<br>символов                                                                                         |
| 1.3.6.1.4.1.35160.1.8.0     | deviceDescription | DisplayString<br>(OctetString) | R/W | Текстовое описание устройства,<br>максимум 53 символа                                                                           |
| 1.3.6.1.4.1.35160.1.9.1.2.1 | fromIP.1          | IpAddr<br>(OctetString)        | R/W | Нижняя граница разрешенного<br>диапазона адресов №1                                                                             |
| 1.3.6.1.4.1.35160.1.9.1.3.1 | toIP.1            | IpAddr<br>(OctetString)        | R/W | Верхняя граница разрешенного<br>диапазона адресов №1                                                                            |
| 1.3.6.1.4.1.35160.1.9.1.2.2 | fromIP.2          | IpAddr<br>(OctetString)        | R/W | Нижняя граница разрешенного<br>диапазона адресов №2                                                                             |
| 1.3.6.1.4.1.35160.1.9.1.3.2 | toIP.2            | IpAddr<br>(OctetString)        | R/W | Верхняя граница разрешенного<br>диапазона адресов №2                                                                            |
| 1.3.6.1.4.1.35160.1.28.0    | vlanOn            | Integer32 (01)<br>(Integer)    | R/W | Признак включения тегирования<br>IEEE 802.1Q VLAN: 1 – тегирование<br>включено, 0 - выключено                                   |
| 1.3.6.1.4.1.35160.1.29.0    | vlanVID           | Integer32 (04095)<br>(Integer) | R/W | Идентификатор VLAN'a                                                                                                            |
| 1.3.6.1.4.1.35160.1.30.0    | vlanPCP           | Integer32 (07)<br>(Integer)    | R/W | Приоритет VLAN                                                                                                                  |
| 1.3.6.1.4.1.35160.1.31.0    | deviceReset       | Integer32 (0255)<br>(Integer)  | R/W | При записи любого значения в эту<br>переменную происходит<br>перезагрузка устройства.<br>Считываемое значение не<br>определено. |

### Список поддерживаемых OID стандартной ветки iso.org.dod.internet.mgmt.mib-2.system:

| OID               | Имя переменной | Тип данных                     | Доступ | Описание                                                                                                               |
|-------------------|----------------|--------------------------------|--------|------------------------------------------------------------------------------------------------------------------------|
| 1.3.6.1.2.1.1.1.0 | sysDescr       | DisplayString<br>(OctetString) | R      | То же, что и deviceInfo                                                                                                |
| 1.3.6.1.2.1.1.2.0 | sysObjectID    | OID                            | R      | OID переменной deviceInfo<br>(1.3.6.1.4.1.35160.1.1)                                                                   |
| 1.3.6.1.2.1.1.3.0 | sysUpTime      | TimeTicks                      | R      | Промежуток времени в единицах<br>0,01 с, прошедший с момента<br>включения устройства или его<br>последней перезагрузки |
| 1.3.6.1.2.1.1.4.0 | sysContact     | DisplayString<br>(OctetString) | R/W    | То же, что и deviceDescription                                                                                         |
| 1.3.6.1.2.1.1.5.0 | sysName        | DisplayString<br>(OctetString) | R/W    | То же, что и deviceName                                                                                                |
| 1.3.6.1.2.1.1.6.0 | sysLocation    | DisplayString<br>(OctetString) | R/W    | To же, что и deviceDescription                                                                                         |
| 1.3.6.1.2.1.1.7.0 | sysServices    | Integer32 (0127)<br>(Integer)  | R      | Значение, описывающее набор<br>поддерживаемых устройством<br>сетевых сервисов. Всегда равно 64.                        |

### 4 Реализация протокола SNMP

### 4.1 Общие сведения

Устройство PING3 поддерживает мониторинг, управление и настройку параметров по протоколу SNMP v1, v2c. Для этой цели можно использовать любые программные средства, работающие с указанными версиями протокола. Используется стандартный UDP-порт 161. Реализация протокола SNMP имеет следующие ограничения:

- Команды GET и GET NEXT поддерживают максимум 33 переменные в одном запросе, причем среди них может быть максимум одна переменная типа OctetString (текстовая строка).
- Команда SET поддерживает только одну переменную.
- Команда GET BULK не поддерживается.

Перечень поддерживаемых устройством OID содержатся в файле ping3.mib, доступном для скачивания на сайте www.equicom.ua. Используйте только mib файл, соответствующий текущей версии firmware. Подробное описание всех OID приведено в разделах по каждой ветке конкретной функции устройства. Bce переменные сгруппированы в iso.org.dod.internet.private.enterprise.equicom.ping3 (1.3.6.1.4.1.35160.1),а также поддерживается стандартная ветка iso.org.dod.internet.mgmt.mib-2.system (1.3.6.1.2.1.1).

В протоколе SNMP v1 и v2c аутентификация пользователя осуществляется при помощи строки Community, которая выполняет функцию пароля. В устройстве PING3 возможно задать три отдельных строки (максимальная длина каждой 14 символов):

Read Community – пароль для чтения параметров Read/Write Community – пароль для чтения/изменения параметров Trap Community – пароль, передаваемый в Тгар сообщениях

Значение по умолчанию для всех – public

Строка Community, заданная в устройстве PING3, должна совпадать со строкой, содержащейся в полученном SNMP пакете. Если это условие не выполняется, пакет игнорируется. Если в устройстве PING3 в качестве строки Community задана пустая строка, то будут обработаны SNMP пакеты, содержащие любое значение Community (т.е. анализ Community будет отключен).

### 4.2 TRAP сообщения

#### 4.2.1 Обзор

Реализована отправка SNMP трапов (только v2c) как обычных, так и с возможностью подтверждения, при наступлении различных событий, связанных с функционированием устройства (подробнее см. в разделах по каждой конкретной функции устройства). Можно задать максимум четыре IP адреса, на которые будут отправляться Trap сообщения. Для каждого из адресов можно задать номер порта получателя (по умолчанию 162) и установить признак подтверждения доставки. Если признак подтверждения установлен, Trap сообщения отправляются в формате InformRequest, после чего устройство PING3 ожидает подтверждения доставки (сообщения get-response от принимающей стороны). Если в течение ~5с подтверждение не будет получено, происходит повторная попытка отправки Trap сообщения – и так до успешного получения подтверждения. Если призошло несколько событий, каждое из которых инициирует отправку Trap сообщения, то устройство будет пытаться передать эти сообщения последовательно, до получения подтверждения по каждому из них. При перезагрузке устройства все неподтвержденные трапы аннулируются.

## Equicom \_\_\_\_

Существует понятие «взаимоисключающих» Trap сообщений. Это сообщения, причиной которых стали события, которые не могут произойти одновременно и логически противоречат друг другу. Например, если первое Trap сообщение сгенерировано по положительному фронту сигнала на цифровом входе, а второе по отрицательному фронту на этом же входе, то такие два сообщения являются взаимоисключающими. Если некоторое Trap сообщение ожидает своей очереди для передачи (а это может продолжаться сколь угодно долго, если, например, включено подтверждение доставки, а принимающий узел временно не доступен), и за это время успевает сгенерироваться взаимоисключающее Trap сообщение, то сообщение №1 будет удалено из очереди и передано будет только сообщение №2.

Подобная ситуация может возникнуть и в случае, если события, приводящие к генерации взаимоисключающих Trap сообщений, происходят слишком часто – быстрее, чем успевают передаваться сообщения (причем в данном случае не обязательно наличие признака подтверждения доставки сообщения). В таких случаях всегда будет передаваться самое последнее из взаимоисключающих Trap сообщений.

В следующем разделе перечислены все группы взаимоисключающих событий, приводящих к возникновению взаимоисключающих Trap сообщений.

### 4.2.2 Структура Trap сообщений

Trap сообщения, генерируемые устройством PING3, соответствуют версии SNMP v2c. Каждое Trap сообщение содержит 4 переменные.

**Переменная 1** называется sysUpTime и имеет OID 1.3.6.1.2.1.1.3.0, это стандартная переменная категории System. Переменная имеет синтаксис TimeTicks, ее значение равно промежутку времени в единицах 0,01 с, прошедшему с момента включения устройства или его последней перезагрузки.

**Переменная 2** называется snmpTrapOID и имеет OID 1.3.6.1.6.3.1.1.4.1.0. Это стандартная переменная категории snmpMIBObjects, она не доступна для записи и чтения, а предназначена исключительно для передачи в теле Trap сообщений. Переменная имеет синтаксис OID и ее значение содержит идентификатор объекта (OID), указывающий на характер события, вызвавшего отправку данного Trap сообщения. В следующей таблице приведены все возможные OID, значения которых может принимать данная переменная, и описаны соответствующие им события:

| OID                      | Имя объекта                                                                 | Описание события                                                                            | Связь между<br>событиями |
|--------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|
| 1.3.6.1.4.1.35160.1.0.1  | trapPowerOn                                                                 | Канал управления питанием включен                                                           | Взаимоисключающие        |
| 1.3.6.1.4.1.35160.1.0.2  | trapPowerOff                                                                | Канал управления питанием выключен                                                          | события                  |
| 1.3.6.1.4.1.35160.1.0.3  | trapDigitalRise                                                             | Зафиксирован положительный фронт сигнала на<br>цифровом входе (переход с логического 0 в 1) | Взаимоисключающие        |
| 1.3.6.1.4.1.35160.1.0.4  | trapDigitalFall                                                             | Зафиксирован отрицательный фронт сигнала на<br>цифровом входе (переход с логической 1 в 0)  | события                  |
| 1.3.6.1.4.1.35160.1.0.5  | trapAnalogTooLow                                                            | Результат измерения стал меньше нижнего порога                                              |                          |
| 13614135160106           | 25160 1.0.6 така Аладаа Етат I ан Результат измерения стал больше или равен |                                                                                             |                          |
| 1.5.0.1.4.1.55100.1.0.0  | uapAnalogrioniLow                                                           | нижнему порогу                                                                              | Взаимоисключающие        |
| 1.3.6.1.4.1.35160.1.0.7  | trapAnalogTooHigh                                                           | Результат измерения стал больше верхнего порога                                             | события                  |
| 1.3.6.1.4.1.35160.1.0.8  | trapAnalogFromHigh                                                          | gFromHigh Результат измерения стал меньше или равен верхнему порогу                         |                          |
| 1.3.6.1.4.1.35160.1.0.9  | trapKnockAlarm                                                              | Сработал датчик удара                                                                       | Взаимоисключающие        |
| 1.3.6.1.4.1.35160.1.0.10 | trapKnockDisalarm                                                           | Срабатывание датчика удара прекратилось                                                     | события                  |
| 1.3.6.1.4.1.35160.1.0.11 | trapPowerSensorBad                                                          | Напряжение в сети пропало                                                                   | Взаимоисключающие        |
| 1.3.6.1.4.1.35160.1.0.12 | trapPowerSensorGood                                                         | Напряжение в сети появилось                                                                 | события                  |
| 1.3.6.1.4.1.35160.1.0.13 | trapTest                                                                    | Отправлено тестовое Trap сообщение                                                          | -                        |

Подробности см. в разделах по каждому конкретному событию.

**Переменная 3** зависит от того, каким именно событием вызвана генерация данного Trap сообщения. В качестве этой переменной могут выступать объекты со следующими OID:

| OID                       | Имя объекта        | Тип<br>данных          | Значение<br>переменной                      | Описание события                                                      |
|---------------------------|--------------------|------------------------|---------------------------------------------|-----------------------------------------------------------------------|
| 1.3.6.1.4.1.35160.1.22.0  | knockState         | Integer32<br>(Integer) | 1                                           | Все события, связанные<br>с датчиком удара                            |
| 1.3.6.1.4.1.35160.1.26.0  | powerSensorState   | Integer32<br>(Integer) | 1                                           | Все события, связанные<br>с датчиком пропадания сети                  |
| 1.3.6.1.4.1.35160.1.101.0 | powerChannelNumber | Integer32<br>(Integer) | Номер канала<br>управления питанием<br>(1N) | Все события, связанные<br>с каналами управления питанием<br>PWR1-PWRN |
| 1.3.6.1.4.1.35160.1.102.0 | dgLineNumber       | Integer32<br>(Integer) | Номер цифровой<br>линии (1N)                | Все события, связанные<br>с цифровыми линиями DG1-DGN                 |
| 1.3.6.1.4.1.35160.1.103.0 | analogLineNumber   | Integer32<br>(Integer) | Номер аналогового<br>входа (1N)             | Все события, связанные<br>с аналоговыми входами AN1-ANN               |
| 1.3.6.1.4.1.35160.1.104.0 | trapTestNumber     | Integer32<br>(Integer) | 1                                           | Ручная отправка тестового Trap сообщения                              |

**Переменная 4** называется deviceName и имеет OID 1.3.6.1.4.1.35160.1.7.0, это переменная из набора системных настроек. Переменная имеет синтаксис DisplayString, это текстовое имя устройства, задаваемое пользователем.

#### 4.3 Настройки SNMP

#### 4.3.1 WEB интерфейс

#### > Особенности реализации протокола SNMP описаны на стр. 13

Страница настроек открывается при выборе пункта «SNMP» верхней строки меню:

| Ping3                 | × +                                                                        |                                                      |                                                                                         |                |              | -            |      |
|-----------------------|----------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------|--------------|--------------|------|
|                       | .168.2.200/n                                                               |                                                      |                                                                                         | <u>ک</u>       | ⊠ ⊻ 🖺        | 金 🌵          | ♦ =  |
| Ping3                 |                                                                            |                                                      |                                                                                         |                |              |              |      |
| System SNMP Por       | wer Channels Di                                                            | igital Lines                                         | Analog Lines                                                                            | Knock Sensor   | Power Sensor | <u>Tools</u> | Exit |
| SNMP Traps:           | trap 1: 192.168.2.2<br>trap 2: 0.0.0.0<br>trap 3: 0.0.0.0<br>trap 4: 0.0.0 | Ask Ack:<br>Ask Ack:<br>Ask Ack:<br>Ask Ack:<br>Save | Port:       162         Port:       162         Port:       162         Port:       162 | Send test trap |              |              |      |
| Read Community:       | •                                                                          | confirm con                                          | munity:                                                                                 | Save           |              |              |      |
| Read/Write Community: | •                                                                          | confirm con                                          | nmunity: •                                                                              | Save           |              |              |      |
| Trap Community:       | •                                                                          | confirm con                                          | nmunity: •                                                                              | Save           |              |              |      |

Здесь возможно задать четыре IP адреса, на которые будут отправляться Trap сообщения, а также для каждого адреса признак подтверждения доставки **Ask Ack** и номер порта получателя **Port**. Пустые строки в строке IP адреса не допускаются – если адрес не задан, он должен иметь значение 0.0.0.0. Если указать номер порта 0, пакеты будут отправляться на стандартный порт 162.

## Equicom \_\_\_\_

Правее находится кнопка Send test trap – ручная отправка тестового Trap сообщения. Если настройки, описанные в предыдущем абзаце, были изменены, то перед использованием кнопки Send test trap их необходимо сохранить кнопкой «Save», иначе изменения будут потеряны.

Ниже находятся поля для задания строк **Read Community**, **Read/Write Community** и **Trap Community**. Для изменения нужной строки необходимо удалить символ «•», видимый в поле ввода, и ввести новое значение. Аналогично ввести строку в соседнем поле для подтверждения и нажать соответствующую кнопку «Save».

### 4.3.2 Telnet

> Особенности реализации протокола SNMP описаны на стр. 13

Настройки SNMP находятся в пункте «n - SNMP» основного меню. Меню настроек выглядит следующим образом:

SNMP settings Select item: 1 - SNMP trap1: 192.168.2.2:162 2 - SNMP trap2: disabled 3 - SNMP trap3: disabled 4 - SNMP trap4: disabled r - read community: \* w - read/write community: \* t - trap community: \* s - send test trap ESC - return

Пункты **1..4** предназначены для задания четырех IP адресов, на которые будут отправляться Тгар сообщения, а также номера порта получателя и признака подтверждения доставки для каждого адреса:

New Trap to IP: 192.168.2.2 New Ask for ACK (Y/N): N New Trap Port (0 - 65535): 162

Если указать номер порта 0, пакеты будут отправляться на стандартный порт 162.

Следующие три пункта предназначены для задания строк **Read Community**, **Read/Write Community** и **Trap Community**. При вводе строк Community требуется повторный ввод для подтверждения, набираемые символы не отображаются на экране.

Пункт «s - send test trap» - ручная отправка тестового Trap сообщения.

### 4.3.3 SNMP

### > Особенности реализации протокола SNMP описаны на стр. 13

Список OID, отвечающих за настройки SNMP:

| OID                          | Имя<br>переменной | Тип данных                      | Доступ | Описание                                                                                                                                         |  |
|------------------------------|-------------------|---------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.3.6.1.4.1.35160.1.10.1.2.x | snmpIPAddr.x      | IpAddr<br>(OctetString)         | R/W    | IP адрес х для отправки Trap<br>сообщений (x = 14)                                                                                               |  |
| 1.3.6.1.4.1.35160.1.10.1.3.x | snmpAskAck.x      | Integer32 (01)<br>(Integer)     | R/W    | Признак подтверждения при<br>отправке Тгар сообщений для IP<br>адреса x (x = 14): 1-подтверждение<br>включено, 0-выключено.                      |  |
| 1.3.6.1.4.1.35160.1.10.1.4.x | snmpPort.x        | Integer32 (065535)<br>(Integer) | R/W    | Номер порта для IP адреса х для<br>отправки Тгар сообщений (х = 14).<br>Если указать 0, пакеты будут<br>отправляться на стандартный порт<br>162. |  |

### 5 Поддержка IEEE 802.1Q VLAN

В устройствах PING3 реализована поддержка тегов IEEE 802.1Q VLAN.

VLAN (Virtual Local Area Network) – группа устройств, имеющих возможность взаимодействовать между собой напрямую на канальном уровне, хотя физически при этом они могут быть подключены к разным сетевым коммутаторам. И наоборот, устройства, находящиеся в разных VLAN'ах, невидимы друг для друга на канальном уровне, даже если они подключены к одному коммутатору, и связь между этими устройствами возможна только на сетевом и более высоких уровнях. В современных сетях VLAN – важный механизм для создания логической топологии сети, не зависящей от её физической топологии. Кроме того, данная технология имеет большое значение для повышения безопасности сетей.

Согласно стандарту IEEE 802.1Q, для определения принадлежности фрейма к тому или иному VLAN'y, в его заголовок добавляется специальный *mer*. Размер тега – 4 байта. Он состоит из таких полей:

| TPID | Priority | CFI | VLAN ID |
|------|----------|-----|---------|
|------|----------|-----|---------|

#### Тег 802.1Q

- Tag Protocol Identifier (TPID) идентификатор протокола тегирования. Размер поля 16 бит. Указывает какой протокол используется для тегирования. Для 802.1q используется значение 0x8100.
- Priority приоритет. Размер поля 3 бита. Используется стандартом IEEE 802.1р для задания приоритета передаваемого трафика. Возможные уровни приоритета – от 0 до 7.
- Canonical Format Indicator (CFI) индикатор канонического формата. Размер поля 1 бит. В пакетах, генерируемых устройствами PING3, его значение всегда равно 0.

# Equicom \_\_\_\_

 VLAN Identifier (VID) – идентификатор VLAN'а. Размер поля – 12 бит. Указывает какому VLAN'у принадлежит фрейм. Допустимы значения в диапазоне от 0 до 4095. Значения 0 и 4095 зарезервированы для служебных целей и не должны использоваться, значение 1 принадлежит в коммутаторах VLAN'у по умолчанию.

Тег вставляется перед полем "Тип протокола". Так как фрейм изменился, пересчитывается контрольная сумма.

| Исходный | Адрес      | Адрес       | Тип       | Данные | Контрольная |
|----------|------------|-------------|-----------|--------|-------------|
| фрейм    | получателя | отправителя | протокола |        | сумма       |

| Тегированный<br>фрейм | Адрес<br>получателя | Адрес<br>отправителя | Тег | Тип<br>протокола | Данные | Новая<br>контрольная<br>сумма |
|-----------------------|---------------------|----------------------|-----|------------------|--------|-------------------------------|
|-----------------------|---------------------|----------------------|-----|------------------|--------|-------------------------------|

Поддержка заголовков TAG based VLAN 802.1Q позволяет расширить область применения устройств серии PING3. При использовании в структуре сети коммутаторов, поддерживающих данную технологию, появляется возможность перенаправить пакеты от всех устройств мониторинга в один служебный VLAN, что во многих случаях упрощает их прием и дальнейшую обработку, а также повышает безопасность работы сети.

Все настройки тегов IEEE 802.1Q VLAN описаны в разделе Системные настройки, стр. 9.

### 6 Цифровые линии ввода/вывода

Количество цифровых линий ввода/вывода зависит от конкретной модели устройства. Линии именуются DG1..DGN, где N – количество линий в данном устройстве.

Каждая из цифровых линий независимо может быть запрограммирована на ввод или на вывод. Имеется возможность управлять направлением передачи и считывать состояние всех линий, а также управлять состоянием выходных линий как по отдельности, так и совместно (например, если n линий запрограммированы на ввод (вывод), то к ним можно обращаться как к n-разрядному порту ввода (вывода)).

Для входных линий задается параметр holding time в диапазоне 0..2,55с – время, в течение которого новое состояние входного сигнала должно оставаться неизменным, чтобы оно было зафиксировано. Любые изменения с меньшей длительностью будут игнорироваться. Это позволяет отфильтровать кратковременные изменения уровня входного сигнала, вызванные помехами или дребезгом механических контактов датчиков.

Существуют ситуации, когда состояние цифровых линий не зависит от программных настроек. К ним относятся: промежуток времени около 1с с момента включения устройства, режим перезагрузки и режим обновления firmware. В этих ситуациях все линии DG оказываются запрограммированными на ввод.

Возможна отправка Trap сообщений при изменении состояния любой входной линии (независимо настраивается отправка по положительному и по отрицательному фронту сигнала). Подробности о Trap сообщениях см. в разделе *Trap сообщения*, стр. 13.

### 6.1 Web интерфейс

#### > Общая информация о цифровых линиях ввода/вывода находится на стр. 18

Настройки цифровых линий находятся в пункте «Digital Lines» верхней строки меню (в данном примере количество линий в устройстве N=5):

| Ping3                                                            | × +                        |                            |                       |                    |                    | -            |           | ×          |
|------------------------------------------------------------------|----------------------------|----------------------------|-----------------------|--------------------|--------------------|--------------|-----------|------------|
| $\widehat{\square} \leftarrow \rightarrow C O 2 19$              | 2.168.2.200/d              |                            |                       | ☆                  | ♡ ⊻ 🖺              | 金 🌵          | <b>\$</b> | ≡          |
| Ping3                                                            |                            |                            |                       |                    |                    |              |           |            |
| <u>System</u> <u>SNMP</u> <u>Po</u>                              | wer Channels               | Digital Lines              | Analog Lines          | Knock Sensor       | Power Sensor       | <u>Tools</u> | Ex        | <u>cit</u> |
| DG1:                                                             | ⊖ output                   | • input value = 1 ho       | olding time: 0.10 sec | : (02.55) 🗹 trap o | n rise 🔲 trap on f | fall         | Save      | •          |
| DG2:                                                             | 💿 output                   | $\bigcirc$ input value = 0 | (0/1)                 |                    |                    |              | Save      |            |
| DG3:                                                             | <ul> <li>output</li> </ul> | $\bigcirc$ input value = 1 | ] (0/1)               |                    |                    |              | Save      |            |
| DG4:                                                             | ○ output                   | • input value = 0 ho       | olding time: 0.10 sec | : (02.55) 🗌 trap o | n rise 🔲 trap on f | fall         | Save      | •          |
| DG5:                                                             | ○ output                   | • input value = 0 ho       | olding time: 0.10 sec | : (02.55) 🗌 trap o | n rise 🔲 trap on f | fall         | Save      |            |
| Lines directions:<br>Lines output values:<br>Lines input values: | IIOOI<br>10-<br>001        | (Output byte: 04 h         | nex Save)             |                    |                    |              |           |            |

Для каждой линии можно задать следующие параметры:

Line DG\* – текстовое имя, максимум 17 символов output, input – настройка линии на вывод или на ввод

Если линия настроена на ввод (в данном примере DG1, DG4, DG5), то для нее можно задать следующие параметры:

holding time – время реакции на кратковременные изменения уровня входного сигнала

Условия отправки Тгар сообщений:

trap on rise – по положительному фронту входного сигнала (переход из логического 0 в 1) trap on fall – по отрицательному фронту входного сигнала (переход из логической 1 в 0)

Если линия настроена на вывод (в данном примере DG2, DG3), то можно задать ее состояние – логический 0 или 1 (параметр value).

Изменения параметров для каждой линии сохраняются при помощи отдельной кнопки «Save» (см. *замечание* по этому поводу на стр. 7). При изменении направления линии (вход/выход) сохранять изменения кнопкой «Save» не требуется, это происходит автоматически.

В нижней части страницы находится следующая информация:

Lines directions – сводная информация о направлении всех линий (I/O)

## Equicom \_\_\_\_

Lines output values – сводная информация о состоянии выходных линий (0/1), входные линии обозначены знаком «–»

Lines input values – сводная информация о состоянии входных линий (0/1), выходные линии обозначены знаком «–»

Output byte – значение байта для совместного управления всеми выходными линиями. Вводится 16-ричное значение, для сохранения имеется отдельная кнопка «Save». Каждый из разрядов bit0..bit(N-1) этого байта управляет состоянием одной из цифровых линий DG1..DGN (bit0 – DG1, bit1 – DG2 и т.д.) Разряды bit с номерами N и выше ни на что не влияют (предполагается, что количество линий в устройстве равно N). Если данная линия запрограммирована на вывод, то при сохранении изменений значение соответствующего этой линии бита немедленно повлияет на состояние линии. Если же линия запрограммирована на ввод, значение соответствующего ей бита будет запомнено, но вступит в силу только в том случае, если линия будет перепрограммирована на вывод.

### 6.2 Telnet

> Общая информация о цифровых линиях ввода/вывода находится на стр. 18

Настройки цифровых линий находятся в пункте «d - Digital Lines» основного меню. Общее меню настроек выглядит следующим образом:

Select item:

1 - DG1: : input value = 1, holding time = 0.10s, traps on rise
2 - DG2: : output value = 0
3 - DG3: : output value = 1
4 - DG4: : input value = 0, holding time = 0.10s, traps are disabled
5 - DG5: : input value = 0, holding time = 0.10s, traps are disabled
a - all Lines: 0b00000101 = 0x05
ESC - return

Пункты **1..N** (в данном примере количество линий в устройстве N=5) управляют настройками каждой из линий по отдельности. Возле названия каждой линии (DG1..DGN) отображается ее текстовое имя (в приведенном примере все имена – пустая строка), направление линии (input/output), состояние линии (0/1) и для входных линий – значение параметра **holding time** и разрешенные для данной линии виды Trap сообщений. При входе в любой из пунктов, управляющий настройками **входной** линии, открывается следующее подменю:

```
Digital Line #1 settings, input value = 1
Select item:
n - name:
d - direction: input
h - holding time: 0.10s
t - trap type: traps on rise
ESC - return
```

Здесь имеются следующие пункты:

n - name – задание текстового имени линии, максимум 17 символов

d - direction – направление линии, работает в триггерном режиме

 ${\bf h}$  - holding time – время реакции на кратковременные изменения уровня входного сигнала

t - trap type – управление отправкой Тгар сообщений, при входе вызывает подменю:

Digital Line #1: trap sources Select item: r - trap on rise: ENABLED f - trap on fall: disabled ESC - return

Пункты подменю позволяют независимо включить отправку Trap сообщений по положительному фронту входного сигнала (trap on rise) или по отрицательному фронту (trap on fall). Оба пункта работают в триггерном режиме.

Если в общем меню настройки цифровых линий войти в пункт, управляющий настройками выходной линии, откроется следующее подменю:

Digital Line #2 settings, output value = 0 Select item: n - name: d - direction: output v - value: 0 ESC - return

Первые два пункта здесь аналогичны таким же пунктам в меню настройки входной линии, а третий пункт «v - value» позволяет изменить состояние выходной линии (0/1).

Пункт «a - all Lines» общего меню настройки цифровых линий предназначен для совместного управления линиями:

a - all Lines: 0b00000101 = 0x05

Возле названия пункта отображается в двоичном и 16-ричном виде число, называемое «**Input byte**». Каждый из разрядов bit0..bit(N-1) этого числа соответствует состоянию одной из цифровых линий DG1..DGN (bit0 – DG1, bit1 – DG2 и т.д.) Разряды bit с номерами N и выше не используются (предполагается, что количество линий в устройстве равно N). В данном случае не играет роли направление линий, отображается фактическое состояние сигналов на них.

При вызове данного пункта появляется возможность задать в 16-ричном виде другое число, называемое «Output byte»:

Current output port byte (affects only output lines) (00..FF): 4 New output port byte (affects only output lines) (00..FF): 4

Разряды данного байта соответствуют цифровым линиям DG1..DGN аналогично тому, как описано для разрядов **Input byte** в предыдущем абзаце. Но разряды **Output byte** влияют только на состояние выходных линий. Если данная линия запрограммирована на вывод, то при сохранении **Output byte** значение соответствующего этой линии бита немедленно повлияет на состояние линии. Если же линия запрограммирована на ввод, значение соответствующего ей бита будет запомнено, но вступит в силу только в том случае, если линия будет перепрограммирована на вывод.

## Equicom \_\_\_\_\_

### 6.3 SNMP

### > Общая информация о цифровых линиях ввода/вывода находится на стр. 18

Список OID, отвечающих за настройки цифровых линий ввода/вывода (N – количество линий в устройстве; подробнее о протоколе SNMP см. в разделе *Реализация протокола SNMP*, стр. 13):

| OID                          | Имя<br>переменной | Тип данных                     | Доступ | Описание                                                                                                                                                                                     |
|------------------------------|-------------------|--------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.3.6.1.4.1.35160.1.12.0     | dgDirections      | Integer32 (0255)<br>(Integer)  | R/W    | 1 байт – направление передачи<br>цифровых линий, биты 0(N-1)<br>соответствует линиям DG1DGN.<br>Биты ≥N не используются. Значения<br>битов: 0-выходная линия, 1-входная<br>линия.            |
| 1.3.6.1.4.1.35160.1.13.0     | dgOutputs         | Integer32 (0255)<br>(Integer)  | R/W    | 1 байт – состояние выходных линий,<br>биты 0(N-1) соответствует линиям<br>DG1-DGN. Биты ≥N не<br>используются.                                                                               |
| 1.3.6.1.4.1.35160.1.14.0     | dgInputs          | Integer32 (0255)<br>(Integer)  | R      | 1 байт – текущее состояние<br>цифровых линий, независимо от их<br>направления. Биты 0(N-1)<br>соответствует линиям DG1-DGN,<br>биты ≥N не используются.                                      |
| 1.3.6.1.4.1.35160.1.15.1.2.x | dgName.x          | DisplayString<br>(OctetString) | R/W    | Текстовое имя линии, максимум 17<br>символов. х – номер линии (1N)                                                                                                                           |
| 1.3.6.1.4.1.35160.1.15.1.3.x | dgTrapRise.x      | Integer32 (01)<br>(Integer)    | R/W    | Управление Тгар сообщениями по<br>положительному фронту сигнала на<br>входе, имеет смысл только для<br>входных линий.<br>1-отправка сообщений включена,<br>0-выключена. х – номер линии (1N) |
| 1.3.6.1.4.1.35160.1.15.1.4.x | dgTrapFall.x      | Integer32 (01)<br>(Integer)    | R/W    | Управление Тгар сообщениями по<br>отрицательному фронту сигнала на<br>входе, имеет смысл только для<br>входных линий.<br>1-отправка сообщений включена,<br>0-выключена. х – номер линии (1N) |
| 1.3.6.1.4.1.35160.1.15.1.5.x | dgDirection.x     | Integer32 (01)<br>(Integer)    | R/W    | Направление линии: 1-вход, 0-выход.<br>х – номер линии (1N)                                                                                                                                  |
| 1.3.6.1.4.1.35160.1.15.1.6.x | dgOutput.x        | Integer32 (01)<br>(Integer)    | R/W    | Состояние выходной линии.<br>х – номер линии (1N)                                                                                                                                            |
| 1.3.6.1.4.1.35160.1.15.1.7.x | dgInput.x         | Integer32 (01)<br>(Integer)    | R      | Текущее состояние цифровой линии,<br>независимо от ее направления.<br>x – номер линии (1N)                                                                                                   |
| 1.3.6.1.4.1.35160.1.15.1.8.x | dgTime.x          | Integer32 (0255)<br>(Integer)  | R/W    | Время реакции на кратковременные<br>изменения уровня входного сигнала в<br>единицах 0,01с.<br>х – номер линии (1N)                                                                           |
| 1.3.6.1.4.1.35160.1.102.0    | dgLineNumber      | Integer32 (18)<br>(Integer)    | R      | Количество цифровых линий в<br>данном устройстве                                                                                                                                             |

Переменная dgOutputs влияет только на состояние выходных линий. Если данная линия запрограммирована на вывод, то при изменении dgOutputs значение соответствующего этой линии бита немедленно повлияет на состояние линии. Если же линия запрограммирована на ввод, значение соответствующего ей бита будет запомнено, но вступит в силу только в том случае, если линия будет перепрограммирована на вывод.

Переменные dgOutput.x – это фактически биты переменной dgOutputs. Они также оказывают влияние только на линии, запрограммированные на вывод. Если же соответствующая линия запрограммирована на ввод, значение данной переменной будет запомнено, но вступит в силу только в том случае, если линия будет перепрограммирована на вывод.

По аналогии, переменные dgInput.x фактически являются битами переменной dgInputs.

### 7 Аналоговые входы

Аналоговые входы позволяют измерять напряжение в диапазоне 0..+3,3В при помощи линейного 10-битного АЦП с опорным напряжением 3,3В.

Количество аналоговых входов зависит от от конкретной модели устройства. Входы именуются AN1..ANN, где N – количество входов в данном устройстве.

Для каждого входа можно задать коэффициенты линейной функции пересчета результата преобразования АЦП в необходимую величину. Функция имеет вид:

$$V = O + M * ADC \tag{1}$$

Здесь ADC – предварительно обработанный результат преобразования АЦП, который изменяется в пределах 0..1 при изменении входного напряжения в пределах 0..+3,3В; М (**multiplier**) – множитель в диапазоне -1500.0..+1500.0; О (**offset**) – смещение в диапазоне -1500.0..+1500.0; V (**value**) – значение в диапазоне -3000.0..+3000.0, которое и является результатом измерения. Величины V, O и M – вещественные числа с одним знаком после десятичной точки. Если принять О=0 и M=1023, то мы получим результат преобразования 10-битного АЦП в явном виде – число V, изменяющееся в пределах 0..1023 при изменении входного напряжения в пределах 0..+3,3В.

Данная функция удобна тем, что во многих случаях позволяет преобразовать результат работы АЦП сразу в требуемую величину – напряжение, температуру, влажность и т.д.

Имеется возможность вычислять среднее значение результатов нескольких измерений – параметр Averaging, задаваемый в диапазоне 0..255, который определяет количество измерений для усреднения. Значение 0 означает, что данный аналоговый вход не обрабатывается.

Время T1 единичного преобразования АЦП приблизительно равно 420мкс \* N, где N – количество аналоговых входов в данном устройстве. При усреднении результатов измерений суммарное время преобразования для каждого входа равно T1 \* Averaging.

Для каждого входа задается два пороговых значения – параметры Low limit (нижний порог) и High limit (верхний порог). Если результат измерения V, вычисленный по приведенной выше формуле, пересекает любой из заданных порогов, возможны следующие действия:

- Отправка Тгар сообщений всего 4 варианта: 1) результат измерения стал меньше нижнего порога; 2) стал больше или равен нижнему порогу; 3) стал больше верхнего порога; 4) стал меньше или равен верхнему порогу. Подробнее о Тгар сообщениях см. в разделе *Тгар сообщения*, стр. 13.
- Изменение состояния каналов управления питанием, связанных с данным аналоговым входом (подробнее см. в разделе *Каналы управления питанием – Analog Mode*, стр. 38).

При задании пороговых значений пользователь должен самостоятельно следить за тем, чтобы выполнялось условие Low limit < High limit.

## Equicom \_\_\_\_\_

Имеется возможность задать гистерезис для фиксации пересечения измеряемой величиной пороговых значений. Параметр Hysteresis – вещественное число с одним знаком после десятичной точки в диапазоне 0.0..+1500.0 Смысл гистерезиса в следующем:

- Чтобы зафиксировать повышение результата измерения выше Low limit, он фактически должен стать выше величины Low limit + Hysteresis
- Чтобы зафиксировать понижение результата измерения ниже High limit, он фактически должен стать ниже величины High limit Hysteresis
- Для фиксации понижения результата измерения ниже Low limit, либо повышения выше High limit, параметр Hysteresis не используется.

### 7.1 WEB интерфейс

> Общая информация об аналоговых входах находится на стр. 23

Настройки аналоговых входов находятся в пункте «Analog Lines» верхней строки меню, для каждого входа имеется собственная страница настроек (AN1..ANN) (в данном примере количество линий в устройстве N=4):

| Ping3                                           |                                                                                              | ×                                                              | +                                            |                                                                                                        |        |                    |                   |                    |              |     | -         | (   |    | ×          |
|-------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------|--------|--------------------|-------------------|--------------------|--------------|-----|-----------|-----|----|------------|
| $\widehat{\ } \leftrightarrow \ \rightarrow \ $ | C 🔿 隆 192                                                                                    | 2.168.2.                                                       | 200/a                                        |                                                                                                        |        |                    | ☆                 | $\bigtriangledown$ | $\checkmark$ |     | 岔         | ₽   | ٩  | ≡          |
| Ping3                                           |                                                                                              |                                                                |                                              |                                                                                                        |        |                    |                   |                    |              |     |           |     |    |            |
| System                                          | <u>SNMP</u> Por                                                                              | wer Cha                                                        | annels                                       | Digital Lines                                                                                          | Ar     | <u>ialog Lines</u> | Knock Sensor      | Powe               | r Sen        | sor | To        | ols | Ez | <u>xit</u> |
|                                                 | <u>AN1</u>                                                                                   |                                                                |                                              | <u>AN2</u>                                                                                             |        |                    | AN3               |                    |              | A   | <u>N4</u> |     |    |            |
|                                                 | Line Name:                                                                                   | Curren                                                         | t value:                                     | 500.0=0.0+1023.0*                                                                                      | ADC, I | Depended pow       | er channels: PWR2 |                    |              |     |           |     |    |            |
|                                                 | value offset:<br>value multiplier:<br>low limit:<br>high limit:<br>hysteresis:<br>averaging: | 0.0<br>1023.0<br>300.0<br>700.0<br>20.0<br>100                 | (-1<br>(-1<br>(-1<br>(-1)<br>(0.0<br>(0.0)   | 500.0+1500.0)<br>500.0+1500.0)<br>500.0+1500.0)<br>500.0+1500.0)<br>0+1500.0)<br>255, 0 - line disable | :d)    |                    |                   |                    |              |     |           |     |    |            |
|                                                 | Traps if:                                                                                    | <ul> <li>val</li> <li>val</li> <li>val</li> <li>val</li> </ul> | lue goes<br>lue goes<br>lue goes<br>lue goes | < low limit<br>>= low limit<br><= high limit<br>> high limit                                           |        |                    |                   |                    |              |     |           |     |    |            |
|                                                 |                                                                                              |                                                                |                                              | Save                                                                                                   |        |                    | Cancel            | ]                  |              |     |           |     |    |            |

В верхней части страницы отображается следующая информация:

Current value – текущий результат измерения, вычисленный по приведенной рядом формуле пересчета

**Depended power channels** – номера каналов управления питанием, зависимых от данного аналогового входа, если таковые имеются (подробнее см. в разделе *Каналы управления питанием* – *Analog Mode*, стр. 38)

Для каждого входа можно задать следующие параметры:

Line Name - текстовое имя, максимум 17 символов

value offset, value multiplier – смещение и множитель для функции пересчета Low limit, High limit – нижний и верхний порог hysteresis – значение гистерезиса averaging – количество отсчетов АЦП для усреднения

Ниже можно задать условия отправки Тгар сообщений:

value goes < low limit - если результат измерения стал меньше порога low limit value goes >= low limit - если результат измерения стал больше или равен порогу low limit value goes <= high limit - если результат измерения стал меньше или равен порогу high limit value goes > high limit - если результат измерения стал больше порога high limit

Изменения сохраняются нажатием кнопки «Save».

### 7.2 Telnet

> Общая информация об аналоговых входах находится на стр. 23

Настройки аналоговых входов находятся в пункте «а - Analog Lines» основного меню. Общее меню настроек выглядит следующим образом:

Analog lines settings Select item: 1 - AN1: ": 971.0=0.0+1023.0\*ADC range 0.0...0.0, hyst=0.0

- 2 AN2: ": 521.0=0.0+1023.0\*ADC range 300.0...700.0, hyst=20.0, Depended power channels: PWR2
- 3 AN3: ": 850.0=0.0+1023.0\*ADC range 0.0...0.0, hyst=0.0
- 4 AN4: ": 946.0=0.0+1023.0\*ADC range 0.0...0.0, hyst=0.0

Пункты **1..**N (в данном примере количество входов в устройстве N=4) управляют настройками каждого из входов по отдельности. Возле названия каждого входа (AN1..ANN) отображается его текстовое имя (в приведенном примере все имена – пустая строка) и результат измерения, вычисленный по приведенной рядом формуле. Ниже выводится следующая информация:

range – диапазон между порогами Low limit...High limit

hyst – гистерезис

**Depended power channels** – номера каналов управления питанием, зависимых от данного аналогового входа, если таковые имеются (подробнее см. в разделе *Каналы управления питанием* – *Analog Mode*, стр. 38)

При входе в любой из пунктов 1.. N открывается следующее подменю:

Analog line #2 settings. Current value: 520.0=0.0+1023.0\*ADC,

Depended power channels: PWR2 Select item: n - name: o - value offset: 0.0

ESC - return

# Equicom \_\_\_\_\_

m - value multiplier: 1023.0
l - low limit: 300.0
h - high limit: 700.0
y - hysteresis: 20.0
a - averaging: 100
t - trap type: Traps are disabled
ESC - return

Здесь имеются следующие пункты, позволяющие задать для данного входа:

n - name – текстовое имя, максимум 17 символов
o - value offset – коэффициент О (смещение)
m - value multiplier – коэффициент М (множитель)
l - low limit – нижний порог
h - high limit – верхний порог
y – hysteresis – гистерезис
a – averaging – количество измерений для усреднения
t - trap type – условия отправки Trap сообщений, при входе вызывает подменю:

Select item: d - disable traps l - trap if value < 300.0: disabled r - trap if value >= 300.0: disabled n - trap if value <= 700.0: disabled h - trap if value > 700.0: disabled ESC - return

Пункт «d - disable traps» запрещает отправку всех Тгар сообщений. Остальные пункты работают в триггерном режиме, они позволяют разрешить или запретить отправку сообщений в следующих случаях:

1 - trap if value < 300.0 – если результат измерения стал меньше порога low limit

r - trap if value >= 300.0 - если результат измерения стал больше или равен порогу low limit

n - trap if value <= 700.0 – если результат измерения стал меньше или равен порогу high limit

h - trap if value > 700.0 – если результат измерения стал больше порога high limit

## 7.3 SNMP

> Общая информация об аналоговых входах находится на стр. 23

Список OID, отвечающих за настройки аналоговых входов (N – количество входов в устройстве; подробнее о протоколе SNMP см. в разделе *Реализация протокола SNMP*, стр. 13):

| OID                          | Имя переменной     | Тип данных                     | Доступ | Описание                                                                                                                                                       |
|------------------------------|--------------------|--------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.3.6.1.4.1.35160.1.16.1.2.x | analogName.x       | DisplayString<br>(OctetString) | R/W    | Текстовое имя входа, максимум 17 символов. х – номер входа (1N)                                                                                                |
| 1.3.6.1.4.1.35160.1.16.1.3.x | analogTrapTooLow.x | Integer32 (01)<br>(Integer)    | R/W    | Управление Trap сообщениями, если<br>результат измерения стал меньше<br>нижнего порога. 1-отправка<br>сообщений включена, 0-выключена.<br>x – номер входа (1N) |

# Equicom

| 1.3.6.1.4.1.35160.1.16.1.4.x  | analogTrapFromLow.x  | Integer32 (01)<br>(Integer)             | R/W | Управление Тгар сообщениями, если<br>результат измерения стал больше или<br>равен нижнему порогу. 1-отправка<br>сообщений включена, 0-выключена.<br>x – номер входа (1N)  |
|-------------------------------|----------------------|-----------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.3.6.1.4.1.35160.1.16.1.5.x  | analogTrapTooHigh.x  | Integer32 (01)<br>(Integer)             | R/W | Управление Trap сообщениями, если<br>результат измерения стал больше<br>верхнего порога. 1-отправка<br>сообщений включена, 0-выключена.<br>x – номер входа (1N)           |
| 1.3.6.1.4.1.35160.1.16.1.6.x  | analogTrapFromHigh.x | Integer32 (01)<br>(Integer)             | R/W | Управление Тгар сообщениями, если<br>результат измерения стал меньше или<br>равен верхнему порогу. 1-отправка<br>сообщений включена, 0-выключена.<br>x – номер входа (1N) |
| 1.3.6.1.4.1.35160.1.16.1.7.x  | analogOffset.x       | Integer32<br>(-1500015000)<br>(Integer) | R/W | Коэффициент О (смещение) для<br>функции пересчета в единицах 0,1<br>х – номер входа (1N)                                                                                  |
| 1.3.6.1.4.1.35160.1.16.1.8.x  | analogMultiplier.x   | Integer32<br>(-1500015000)<br>(Integer) | R/W | Коэффициент М (множитель) для<br>функции пересчета в единицах 0,1<br>х – номер входа (1N)                                                                                 |
| 1.3.6.1.4.1.35160.1.16.1.9.x  | analogLow.x          | Integer32<br>(-1500015000)<br>(Integer) | R/W | Нижний порог в единицах 0,1<br>х – номер входа (1N)                                                                                                                       |
| 1.3.6.1.4.1.35160.1.16.1.10.x | analogHigh.x         | Integer32<br>(-1500015000)<br>(Integer) | R/W | Верхний порог в единицах 0,1<br>х – номер входа (1N)                                                                                                                      |
| 1.3.6.1.4.1.35160.1.16.1.11.x | analogHysteresis.x   | Integer32<br>(015000)<br>(Integer)      | R/W | Гистерезис в единицах 0,1<br>х – номер входа (1N)                                                                                                                         |
| 1.3.6.1.4.1.35160.1.16.1.12.x | analogFilter.x       | Integer32 (0255)<br>(Integer)           | R/W | Количество измерений для<br>усреднения (Averaging).<br>х – номер входа (1N)                                                                                               |
| 1.3.6.1.4.1.35160.1.16.1.13.x | analogValue.x        | Integer32<br>(-3000030000)<br>(Integer) | R   | Результат измерения в единицах 0,1<br>х – номер входа (1N)                                                                                                                |
| 1.3.6.1.4.1.35160.1.103.0     | analogLineNumber     | Integer32 (16)<br>(Integer)             | R   | Количество аналоговых входов в<br>данном устройстве                                                                                                                       |

### 7.4 Рекомендации по калибровке входов

Как уже было сказано выше, в тех случаях, когда на аналоговый вход подается напряжение, линейно зависящее от измеряемой величины, формула (1) позволяет пересчитать результат работы АЦП непосредственно в значение измеряемой величины (это может быть напряжение, температура, давление, влажность и т.д.). Для этого необходимо вычислить коэффициенты О и М для формулы (1), зная характер зависимости входного напряжения от измеряемой величины. Но, учитывая разброс параметров аналоговых входов устройств PING3, а также измерительных датчиков, неизбежна некоторая ошибка в вычислениях. Поэтому для повышения точности рекомендуется произвести калибровку конкретного датчика, подключенного к конкретному аналоговому входу.

Мы рассмотрим два случая на примере измерения напряжения. Аналогичную методику можно применять и при измерении других величин. Также смотрите описание методики калибровки в документации к конкретной модели датчика.

## Equicom \_\_\_\_\_

### 7.4.1 Случай прямо пропорциональной зависимости

В этом случае напряжение на аналоговом входе прямо пропорционально зависит от измеряемого напряжения (например, датчиком является обычный резистивный делитель).

### Порядок калибровки

Установите для аналогового входа, к которому подключен датчик, следующие параметры:

O (offset) = 0 M (multiplier) = 1023 Averaging = 100

От стабилизированного источника постоянного напряжения подайте на вход датчика напряжение, значение которого находится вблизи верхней границы допустимого диапазона (при этом напряжение на аналоговом входе PING3 не должно превышать +3,3B). Измерьте напряжение на входе датчика цифровым вольтметром, пусть оно равно U<sub>0</sub>. Через интерфейс PING3 получите результат измерения, соответствующий данному напряжению питания, пусть он равен V<sub>0</sub>. Тогда уточненный множитель М можно вычислить по формуле:

$$M = \frac{U_0}{V_0} * 1023$$

Подставьте полученный множитель в функцию пересчета (1) для данного входа, смещение О оставьте равным 0. На этом калибровка закончена, теперь результат измерения V равен значению напряжения в вольтах.

### 7.4.2 Общий случай линейной зависимости

В этом случае напряжение на аналоговом входе линейно зависит от измеряемого напряжения (например, датчик имеет более сложную схему с применением операционных усилителей).

### Порядок калибровки

Установите для аналогового входа, к которому подключен датчик, следующие параметры:

O (offset) = 0 M (multiplier) = 1023 Averaging = 100

От регулируемого стабилизированного источника постоянного напряжения подайте на вход датчика напряжение, значение которого находится вблизи нижней границы допустимого диапазона. Измерьте напряжение цифровым вольтметром, пусть оно равно U<sub>1</sub>. Через интерфейс PING3 получите результат измерения, соответствующий данному напряжению питания, пусть он равен V<sub>1</sub>. Затем подайте напряжение, значение которого находится вблизи верхней границы допустимого диапазона (при этом напряжение на аналоговом входе PING3 не должно превышать +3,3B), и повторите измерения, в результате чего будут получены результаты U<sub>2</sub> и V<sub>2</sub>. Вычислите коэффициенты O и M по формулам:

$$O = U_1 - \frac{U_2 - U_1}{V_2 - V_1} * V_1$$

$$M = \frac{U_2 - U_1}{V_2 - V_1} * 1023$$

## \_ Equicom

Подставьте полученные коэффициенты в функцию пересчета (1) для данного входа, на этом калибровка закончена. Теперь результат измерения V равен значению напряжения в вольтах.

Можно подставлять в формулу значения О и М, округленные до двух знаков после десятичной точки и умноженные на 10. Тогда результат измерения напряжения будет умноженным на 10 (в единицах 0,1В), что позволит получить дополнительную значащую цифру результата.

### 8 Каналы управления питанием

Количество каналов управления питанием зависит от конкретной модели устройства. Каналы именуются PWR1..PWRN, где N – количество каналов в данном устройстве.

Каналы управления питанием имеют следующие режимы работы:

*Ping Mode* – режим, предназначенный для перезагрузки по питанию различного сетевого оборудования в случае его «зависания», а также для включения (или выключения) питания оборудования на весь период времени, пока отсутствует связь с заданными IP адресами. В этом режиме устройство PING3 постоянно проверяет доступность максимум трех IP адресов путем отправки на них ICMP запросов, в случае прекращения ответов от определенных адресов на основании заданной логической функции принимается решение о включении (или выключении) питания оборудования на заданный промежуток времени. Также возможна перезагрузка оборудования вручную.

**Analog Mode** – управление питанием нагрузки производится в зависимости от значения напряжения на выбранном аналоговом входе: больше или меньше заданного порога, либо нахождение в диапазоне значений. Данный режим позволяет, например, включать вентилятор или кондиционер для охлаждения оборудования при повышении температуры выше верхнего порога, либо включать нагреватель при понижении температуры ниже нижнего порога.

*Ручной режим* – нагрузка постоянно включена, либо постоянно выключена.

Для каждого канала управления питанием настраивается полярность выходного напряжения – логический уровень выходного сигнала, соответствующий состоянию канала «питание включено». По умолчанию для всех каналов установлена негативная полярность, т.е. включению нагрузки соответствует уровень логического 0 на выходе. Смотрите рекомендации по установке полярности в документации к конкретной модели устройства.

Существуют ситуации, когда состояние каналов управления питанием не зависит от программных настроек. К ним относятся: промежуток времени около 1с с момента включения устройства, режим перезагрузки и режим обновления firmware. В этих ситуациях все выходы каналов PWR переводятся в высокоимпедансное состояние, в результате их поведение определяется аппаратной реализацией конкретной модели устройства.

Для всех каналов управления питанием во всех режимах работы возможна отправка Trap сообщений при включении и при выключении нагрузки (настраивается независимо). Подробности о Trap сообщениях см. в разделе *Trap сообщения*, стр. 13.

## Equicom \_\_\_\_\_

### 8.1 Общие настройки, выбор режима

### 8.1.1 WEB интерфейс

#### > Общая информация о каналах управления питанием находится на стр. 29

Настройки каналов управления питанием находятся в пункте «Power Channels» верхней строки меню, для каждого канала имеется собственная страница настроек (в данном примере два канала: PWR1, PWR2). Содержимое этой страницы зависит от текущего режима работы канала. Если канал работает в одном из ручных режимов, страница настроек выглядит следующим образом:

| Ping3                          |             | × +                                           |                 |              |                        |                          |     | -            |      |
|--------------------------------|-------------|-----------------------------------------------|-----------------|--------------|------------------------|--------------------------|-----|--------------|------|
| $ \leftrightarrow \rightarrow$ | C O         | 8 192.168.2.200/p?0                           |                 |              | ☆                      | $\boxtimes$ $\checkmark$ |     | 金 🏺          | 🛭 🕹  |
| Ping3                          |             |                                               |                 |              |                        |                          |     |              |      |
| <u>System</u>                  | <u>SNMP</u> | Power Channels                                | Digital Lines   | Analog Lines | Knock Sensor           | Power Sens               | sor | <u>Tools</u> | Exit |
|                                |             | PWR1                                          |                 |              |                        | PWR2                     |     |              |      |
|                                | Channel     | Name:                                         |                 |              |                        |                          |     |              |      |
|                                | Positive    | Mode: • always ON<br>polarity (1 - power ON): | ○ always OFF    | ○ ping mode  | $\bigcirc$ analog mode |                          |     |              |      |
|                                |             | Traps: 🗌 if turned On                         | 🗌 if turned Off |              |                        |                          |     |              |      |
|                                |             |                                               | Save            |              | Cancel                 | ]                        |     |              |      |

Для каждого канала управления питанием можно задать следующие параметры:

Channel Name – текстовое имя, максимум 17 символов

Positive polarity – выбор позитивной полярности выходного напряжения

Mode – выбор режима работы:

always ON – питание постоянно включено always OFF – питание постоянно выключено ping mode – режим «Ping Mode» analog mode – режим «Analog Mode»

Условия отправки Trap сообщений:

if turned On – при включении питания if turned Off – при выключении питания

Изменения параметров сохраняются нажатием кнопки «Save». При изменении режима работы канала сохранять изменения кнопкой «Save» не требуется, это происходит автоматически.

#### 8.1.2 Telnet

#### > Общая информация о каналах управления питанием находится на стр. 29

Настройки каналов управления питанием находятся в пункте «p - Power Channels» основного меню. Общее меню настроек выглядит следующим образом:

Power channels Select item: 1 - PWR1: ", always ON negative polarity (0 - power ON) traps are disabled 2 - PWR2: ", depends on AN2: ON < 300.0 <= OFF <= 700.0 < OFF , State: OFF negative polarity (0 - power ON) traps are disabled ESC - return

Пункты **1..N** (в данном примере количество каналов в устройстве N=2) управляют настройками каждого из каналов по отдельности. Возле названия каждого канала отображается его текстовое имя (в приведенном примере все имена – пустая строка), текущий режим работы и дополнительная информация, зависящая режима (например, для канала PWR2, работающего в режиме Analog Mode, отображается номер связанного с ним аналогового входа, пороговые значения аналогового параметра и текущее состояние выхода канала). Ниже выводится информация о текущей полярности выходного напряжения и о разрешенных для данного канала видах Тгар сообщений.

При входе в любой из пунктов открывается меню настроек конкретного канала управления питанием. Содержимое этого меню зависит от текущего режима работы канала. Если канал работает в одном из ручных режимов, меню настроек имеет следующий вид:

PWR1, State: ON Select item: n - name: m - mode: always ON t - traps: disabled p - output polarity: negative (0 - power ON) ESC - return

Назначение пунктов меню:

n - name – задание текстового имени канала, максимум 17 символов
 m - mode – выбор режима работы канала, открывает подменю выбора:

Power channel #1 mode Select item: o - always ON: ENABLED f - always OFF: disabled p - ping mode: disabled a - analog mode: disabled ESC - return

Пункты данного подменю позволяют выбрать один из режимов:

always ON – питание постоянно включено always OFF – питание постоянно выключено ping mode – режим «Ping Mode» analog mode – режим «Analog Mode»

t - traps – управление отправкой Тгар сообщений для данного канала, открывает подменю:

# Equicom \_\_\_\_\_

Power channel #1 traps Select item: o - trap if power is switched ON: disabled f - trap if power is switched OFF: disabled ESC – return

Пункты данного меню работают в триггерном режиме и позволяют включить отправку Trap сообщений:

if power is switched ON – при включении питания if power is switched OFF – при выключении питания

**p - output polarity** – изменение полярности выходного напряжения, работает в триггерном режиме

### 8.1.3 SNMP

> Общая информация о каналах управления питанием находится на стр. 29

Список OID, отвечающих за общие параметры каналов управления питанием (N – количество каналов в устройстве; подробнее о протоколе SNMP см. в разделе *Реализация протокола SNMP*, стр. 13):

| OID                            | Имя переменной     | Тип данных                     | Доступ | Описание                                                                                                                       |
|--------------------------------|--------------------|--------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------|
| 1.3.6.1.4.1.35160.1.11.1.2.x   | powerName.x        | DisplayString<br>(OctetString) | R/W    | Текстовое имя канала, максимум 17<br>символов. х – номер канала (1N)                                                           |
| 1.3.6.1.4.1.35160.1.11.1.4.x   | powerMode.x        | Integer32 (03)<br>(Integer)    | R/W    | Режим работы канала: 0-постоянно<br>включен, 1- постоянно выключен,<br>2-Ping mode, 3-Analog mode.<br>х – номер канала (1N)    |
| 1.3.6.1.4.1.35160.1.11.1.1.1.x | powerOnTrap.x      | Integer32 (01)<br>(Integer)    | R/W    | Управление Тгар сообщениями при<br>включении питания. 1-отправка<br>сообщений включена, 0-выключена.<br>х – номер канала (1N)  |
| 1.3.6.1.4.1.35160.1.11.1.12.x  | powerOffTrap.x     | Integer32 (01)<br>(Integer)    | R/W    | Управление Тгар сообщениями при<br>выключении питания. 1-отправка<br>сообщений включена, 0-выключена.<br>х – номер канала (1N) |
| 1.3.6.1.4.1.35160.1.11.1.13.x  | powerOutPolarity.x | Integer32 (01)<br>(Integer)    | R/W    | Полярность выходного напряжения:<br>1-позитивная, 0-негативная.<br>х – номер канала (1N)                                       |
| 1.3.6.1.4.1.35160.1.11.1.34.x  | powerState.x       | Integer32 (01)<br>(Integer)    | R      | Текущее состояние выхода канала:<br>1-ON, 0-OFF.<br>х – номер канала (1N)                                                      |
| 1.3.6.1.4.1.35160.1.101.0      | powerChannelNumber | Integer32 (16)<br>(Integer)    | R      | Количество каналов управления<br>питанием в данном устройстве                                                                  |

## 8.2 Режим Ping Mode

Режим Ping Mode имеет два основных назначения:

- Перезагрузка по питанию (сброс) различного сетевого оборудования в случае его «зависания» (определяется по отсутствию связи с заданными IP адресами)

- Выключение (или включение) выходного напряжения на весь период времени, пока связь с заданными IP адресами отсутствует (например, для включения оборудования резервного

канала связи при возникновении неисправности основного канала, и для его последующего выключения после восстановления нормальной работы основного канала)

В режиме Ping Mode производится постоянная проверка доступности до трех заданных IP адресов путем отправки на них ICMP запросов (ping). В случае прекращения ответов от определенных адресов на основании заданной логической функции принимается решение об отсутствии связи.

Для каждого канала управления питанием можно задать максимум три IP адреса: А, В и С. Для каждого из адресов задаются следующие параметры:

**IP** – собственно адрес. Значение 0.0.0.0 означает, что адрес не задан. В этом случае запрос не посылается и всегда считается успешным<sup>\*</sup>. Если адрес находится в подсети, отличной от подсети устройства PING3, пакеты для него будут отправляться через шлюз, заданный в системных настройках.

ping size – размер ICMP пакета (0..65535 байт), поддерживается фрагментация пакетов. При значении 0 запрос не посылается и всегда считается успешным<sup>\*</sup>.

fails after – количество идущих подряд неудачных ICMP запросов (0..255), после которого считается, что данный IP адрес не ответил. При значении 0 запрос не посылается и всегда считается неудачным<sup>\*</sup>.

**ping timeout** – промежуток времени, в течение которого ожидается ответ на ping (0..25,5с). Если ответ не пришел в течение этого времени, запрос считается неудачным.

ping interval – интервал времени между отправками ICMP запросов (0..25,5с).

<sup>\*</sup> – если IP=0.0.0.0 или ping size=0 и одновременно с этим fails after=0, то приоритет имеет ping size или IP, т.е. запрос не посылается и всегда считается успешным.

Доступен выбор одной из четырех логических функций для обработки ответов от адресов А, В и С. Если данная функция принимает значение «истина», то работа оборудования считается нормальной и никаких действий не производится. Как только функция примет значение «ложь», будет отключено выходное напряжение на интервал времени, заданный параметром **Reset time** (произойдет сброс).

А&В&С – если ответили все три адреса, то сброс не производится

А|В|С – если ответил хотя бы один из трех адресов, то сброс не производится

(A|B)&C – если ответил хотя бы один из адресов A или B и обязательно адрес C, то сброс не производится

А|(В&С) – если ответил адрес А или ответили оба адреса В и С, то сброс не производится

Временные параметры, общие для всего канала:

**Reset time** – продолжительность сброса (0..25,5с). При значении 0 выходное напряжение будет отключено в момент пропадания связи и снова включится только после того, как связь будет восстановлена (логическая функция хотя бы один раз примет значение «истина»). Переключив полярность выходного напряжения (см. раздел *Общие настройки, выбор режима*, стр. 30), можно изменить логику работы канала на противоположную (включение и выключение нагрузки поменяются местами).

**Restore time** – время восстановления оборудования после сброса (0..255с). В течение этого времени не происходит опрос IP адресов.

## Equicom \_\_\_\_\_

В каждом канале имеется счетчик количества произведенных сбросов, его значение доступно для считывания и при необходимости его можно обнулить.

Для каждого канала имеется возможность в любой момент вручную инициировать сброс (кроме случая, когда параметр **Reset time=**0).

### 8.2.1 WEB интерфейс

#### > Общая информация о режиме Ping Mode находится на стр. 32

Внешний вид страницы настроек канала управления питанием в режиме Ping Mode:

|          | Ping3                        |                                   |                                                                       | × +                                                             |                           |                         |                            |        |                                                       |                          |                 |                                           |                                                 |                                        |                            |           | -           |          |             | × |
|----------|------------------------------|-----------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------|-------------------------|----------------------------|--------|-------------------------------------------------------|--------------------------|-----------------|-------------------------------------------|-------------------------------------------------|----------------------------------------|----------------------------|-----------|-------------|----------|-------------|---|
| 6        | $\leftarrow \   \rightarrow$ | C O                               | 8 192.1                                                               | 68.2.200/p                                                      | 0?0                       |                         |                            |        |                                                       |                          |                 | ☆                                         |                                                 | ${igodot}$                             | $ \pm $                    |           | 岔           | ₽        | ٠           | ≡ |
| P        | Ping3                        |                                   |                                                                       |                                                                 |                           |                         |                            |        |                                                       |                          |                 |                                           |                                                 |                                        |                            |           |             |          |             | ^ |
| <u>S</u> | <u>ystem</u>                 | <u>SNMP</u>                       | Powe                                                                  | r Channe                                                        | <u>ls</u>                 | <u>Digital L</u>        | ines                       | An     | alog Lines                                            | <u>š</u>                 | <u>Knock Se</u> | ensor                                     | Por                                             | wer S                                  | ensor                      | <u>r</u>  | <u>Tool</u> | <u>s</u> | <u>Exit</u> |   |
|          |                              |                                   |                                                                       | PWR1                                                            |                           |                         |                            |        |                                                       |                          |                 | ]                                         | PWR2                                            |                                        |                            |           |             |          |             |   |
|          |                              | Channel                           | Name:                                                                 |                                                                 |                           |                         |                            |        |                                                       |                          |                 |                                           |                                                 |                                        |                            |           |             |          |             |   |
|          |                              | Positive                          | Mode: C<br>polarity (1                                                | ) always<br>l - power                                           | ON<br>ON):                | ○ always                | OFF                        | ⊚ pi   | ng mode                                               | 0 a                      | analog mo       | de                                        |                                                 |                                        |                            |           |             |          |             |   |
|          |                              |                                   | Traps:                                                                | ] if turned                                                     | l On                      | 🗌 if turned             | d Off                      |        |                                                       |                          |                 |                                           |                                                 |                                        |                            |           |             |          |             |   |
|          |                              | Rese<br>Restor                    | et time: 3.<br>e time: 10                                             | 0 sec (0                                                        | 25.5<br>(025              | , 0 - reset co<br>5)    | ontinues                   | while  | ping is FA                                            | AIL)                     |                 |                                           |                                                 |                                        |                            |           |             |          |             |   |
|          |                              | Ping fu                           | nction: 🤇                                                             | A&B                                                             | & C                       | $\bigcirc A   B   C$    | 0.                         | A   B) | &C O                                                  | A   (B                   | & C)            |                                           |                                                 |                                        |                            |           |             |          |             |   |
|          |                              | pir<br>fail<br>ping ti<br>ping ir | Pi<br>IP: 19<br>ng size: 64<br>s after: 2<br>meout: 2.<br>nterval: 1. | ng A: OK<br>92.168.2.2<br>4 by<br>atter<br>0 sec (0<br>0 sec (0 | rtes (0<br>mpts (<br>25.5 | )65535)<br>(0255)<br>)) | P<br>0<br>6<br>2<br>2<br>1 | 2.0 se | -<br>bytes (0<br>attempts (<br>ec (025.5<br>ec (025.5 | )6553<br>(0255<br>)<br>) | 5)<br>)         | Ping (<br>0.0.0.<br>64<br>2<br>2.0<br>1.0 | C: -<br>0<br>byt<br>atten<br>sec (0.<br>sec (0. | tes (0.<br>npts (1<br>.25.5)<br>.25.5) | ]<br>6553<br>025<br>)<br>) | 35)<br>5) |             |          |             |   |
|          |                              | State                             | ON N                                                                  | umber of                                                        | resets                    | : 0 🗌 clea              | r counte                   | er 🗌   | manual                                                | reset                    | Ping sta        | ate: rest                                 | tore                                            |                                        |                            |           |             |          |             |   |
|          |                              |                                   |                                                                       |                                                                 |                           | Save                    |                            |        |                                                       | Can                      | cel             |                                           |                                                 |                                        |                            |           |             |          |             |   |

Параметры Channel Name, Mode, Positive polarity и Traps общие для всех режимов работы, они описаны в разделе *Общие настройки каналов управления питанием* – *WEB интерфейс* на стр. 30.

Ниже задаются следующие параметры:

Reset time – продолжительность сброса (0..25,5с) Restore time – время восстановления оборудования после сброса (0..255с) Ping function – логическая функция для обработки ответов от адресов А, В и С

Для каждого из IP адресов A, B и C возле значения адреса отображается его состояние на момент формирования страницы. Возможные варианты:

wait – ожидание ответа на ping ОК – получен ответ на ping

FAIL – ответ на ping не получен

Для каждого из адресов задаются следующие параметры:

IP – значение IP адреса

ping size – размер ICMP пакета (0..65535 байт)

fails after – количество идущих подряд неудачных ICMP запросов (0..255), после которого считается, что данный IP адрес не ответил

ping timeout – время ожидания ответа на ping (0..25,5с)

ping interval – интервал времени между отправками ICMP запросов (0..25,5с)

Назначение элементов нижней строки:

State – состояние выхода данного канала на момент формирования страницы (ON/OFF)

Number of resets – количество произведенных сбросов

clear counter – признак очистки счетчика произведенных сбросов. Если его установить, то после сохранения изменений кнопкой «Save» счетчик будет обнулен.

**manual reset** – признак ручного сброса. Если его установить, то после сохранения изменений кнопкой «Save» произойдет сброс, после чего работа канала продолжится в обычном режиме. Данная функция не действует при **Reset time =** 0.

Ping state – состояние канала на момент формирования страницы. Возможны следующие варианты:

reset – происходит сброс питания в данном канале в течение времени Reset time restore – происходит восстановление после сброса в течение времени Restore time sending ping (A, В или C) – происходит отправка ICMP запроса по одному из адресов idle – интервал между отправками ICMP запросов

#### 8.2.2 Telnet

> Общая информация о режиме Ping Mode находится на стр. 32

Войдите в меню настроек нужного канала управления питанием:

<Главное меню>  $\rightarrow$   $\rightarrow$  <номер канала>

Если канал работает в режиме Ping Mode, меню его настроек имеет следующий вид:

PWR1, State: ON, Ping state: sending ping B Select item: n - name: m - mode: ping mode t - traps: disabled p - output polarity: negative (0 - power ON) r - reset time: 3.0s s - restore time: 10s f - ping function: A&B&C

- c clear reset counter: 3 resets
- a manual reset

# Equicom \_\_\_\_

1 - Ping A: OK , 192.168.2.2 2 - Ping B: FAIL, 192.168.2.8 3 - Ping C: -ESC - return

В верхней строке возле названия канала управления питанием отображается состояние его выхода на момент формирования меню: **ON/OFF** (включен/выключен), а также **Ping state** – возможны следующие варианты:

reset – происходит сброс питания в данном канале в течение времени Reset time restore – происходит восстановление после сброса в течение времени Restore time sending ping (A, В или C) – происходит отправка ICMP запроса по одному из адресов idle – интервал между отправками ICMP запросов

Пункты меню «**n** - **name**», «**m** - **mode**», «**t** - **traps**» и «**p** - **output polarity**» одинаковы для всех режимов работы и подробно описаны в разделе *Общие настройки каналов управления питанием* – *Telnet* на стр. 30

За ними следуют пункты:

r - reset time – задание продолжительности сброса (0..25,5с)

s - restore time – задание времени восстановления оборудования после сброса (0..255с)

f - ping function – задание логической функции для обработки ответов от адресов А, В и С

**c** - **clear reset counter** – обнуление счетчика количества сбросов (текущее значение отображается рядом)

**a** - manual reset – запуск сброса оборудования вручную (только если Reset time ≠ 0)

Пункты «1», «2» и «3» управляют настройками параметров для трех IP адресов – А, В и С соответственно. Возле каждого пункта отображается значение соответствующего ему IP адреса (либо прочерк, если задан адрес 0.0.0.0, что равнозначно не заданному адресу), а также состояние данного адреса на момент формирования меню. Возможные варианты:

wait – ожидание ответа на ping OK – получен ответ на ping FAIL – ответ на ping не получен

При входе в любой из пунктов 1..3 открывается меню настроек конкретного IP адреса:

PWR1 Ping A: OK , 192.168.2.2 Select item: a - IP: 192.168.2.2 s - size: 64b n - number of attempts: 2 attempts t - timeout: 2.0s i - interval between pings: 1.0s ESC - return

Пункты этого меню позволяют задать:

**а - IP** – значение IP адреса

s - size – размер ICMP пакета (0..65535 байт)

\_ Equicom

**n** - **number** of attempts – количество идущих подряд неудачных ICMP запросов (0..255), после которого считается, что данный IP адрес не ответил (параметр fails after)

t - timeout – время ожидания ответа на ping (0..25,5с) (параметр ping timeout)

i - interval between pings – интервал времени между отправками ICMP запросов (0..25,5с)

#### 8.2.3 SNMP

> Общая информация о режиме Ping Mode находится на стр. 32

Список OID, отвечающих за настройки каналов управления питанием в режиме Ping Mode (N – количество каналов в устройстве; подробнее о протоколе SNMP см. в разделе *Реализация протокола SNMP*, стр. 13):

| OID                           | Имя переменной       | Тип данных                      | Доступ | Описание                                                                                                                                           |
|-------------------------------|----------------------|---------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.3.6.1.4.1.35160.1.11.1.8.x  | powerResetTime.x     | Integer32 (0255)<br>(Integer)   | R/W    | Продолжительность сброса в единицах 0,1с.<br>x – номер канала (1N)                                                                                 |
| 1.3.6.1.4.1.35160.1.11.1.9.x  | powerRestoreTime.x   | Integer32 (0255)<br>(Integer)   | R/W    | Время восстановления после сброса<br>в секундах. х – номер канала (1N)                                                                             |
| 1.3.6.1.4.1.35160.1.11.1.10.x | powerPingFunc.x      | Integer32 (14)<br>(Integer)     | R/W    | Номер логической функции для<br>обработки ответов от адресов<br>A,B,C: 1 - A&B&C, 2 - A B C,<br>3 - (A B)&C, 4 - A (B&C).<br>x – номер канала (1N) |
| 1.3.6.1.4.1.35160.1.11.1.14.x | powerNresets.x       | Integer32 (065535)<br>(Integer) | R/W    | Счетчик количества произведенных сбросов. х – номер канала (1N)                                                                                    |
| 1.3.6.1.4.1.35160.1.11.1.15.x | powerPingAddr1.x     | IpAddr<br>(OctetString)         | R/W    | IP адрес А.<br>х – номер канала (1N)                                                                                                               |
| 1.3.6.1.4.1.35160.1.11.1.16.x | powerPingSize1.x     | Integer32 (065535)<br>(Integer) | R/W    | Размер ICMP пакета для адреса А.<br>х – номер канала (1N)                                                                                          |
| 1.3.6.1.4.1.35160.1.11.1.17.x | powerPingAttempts1.x | Integer32 (065535)<br>(Integer) | R/W    | Количество идущих подряд<br>неудачных ICMP запросов, после<br>которого считается, что адрес A не<br>ответил. х – номер канала (1N)                 |
| 1.3.6.1.4.1.35160.1.11.1.18.x | powerPingTimeout1.x  | Integer32 (0255)<br>(Integer)   | R/W    | Промежуток времени в единицах<br>0,1с, в течение которого ожидается<br>ответ на ping для адреса А<br>x – номер канала (1N)                         |
| 1.3.6.1.4.1.35160.1.11.1.19.x | powerPingInterval1.x | Integer32 (0255)<br>(Integer)   | R/W    | Промежуток времени в единицах<br>0,1с между отправками ICMP<br>запросов для адреса А.<br>х – номер канала (1N)                                     |
| 1.3.6.1.4.1.35160.1.11.1.20.x | powerPingState1.x    | Integer32 (02)<br>(Integer)     | R/W    | Текущее состояние адреса А:<br>0 - wait, 1 - OK, 2 - FAIL.<br>х – номер канала (1N)                                                                |
| 1.3.6.1.4.1.35160.1.11.1.21.x | powerPingAddr2.x     | IpAddr<br>(OctetString)         | R/W    | IP адрес В.<br>х – номер канала (1N)                                                                                                               |
| 1.3.6.1.4.1.35160.1.11.1.22.x | powerPingSize2.x     | Integer32 (065535)<br>(Integer) | R/W    | Размер ICMP пакета для адреса В.<br>х – номер канала (1N)                                                                                          |
| 1.3.6.1.4.1.35160.1.11.1.23.x | powerPingAttempts2.x | Integer32 (065535)<br>(Integer) | R/W    | Количество идущих подряд<br>неудачных ICMP запросов, после<br>которого считается, что адрес В не<br>ответил. х – номер канала (1N)                 |
| 1.3.6.1.4.1.35160.1.11.1.24.x | powerPingTimeout2.x  | Integer32 (0255)<br>(Integer)   | R/W    | Промежуток времени в единицах<br>0,1с, в течение которого ожидается<br>ответ на ping для адреса В<br>x – номер канала (1N)                         |

# Equicom \_\_\_\_\_

| 1.3.6.1.4.1.35160.1.11.1.25.x | powerPingInterval2.x | Integer32 (0255)<br>(Integer)   | R/W | Промежуток времени в единицах<br>0,1с между отправками ICMP<br>запросов для адреса В.<br>х – номер канала (1N)                                       |
|-------------------------------|----------------------|---------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.3.6.1.4.1.35160.1.11.1.26.x | powerPingState2.x    | Integer32 (02)<br>(Integer)     | R/W | Текущее состояние адреса В:<br>0 - wait, 1 - OK, 2 - FAIL.<br>х – номер канала (1N)                                                                  |
| 1.3.6.1.4.1.35160.1.11.1.27.x | powerPingAddr3.x     | IpAddr<br>(OctetString)         | R/W | IP адрес С.<br>х – номер канала (1N)                                                                                                                 |
| 1.3.6.1.4.1.35160.1.11.1.28.x | powerPingSize3.x     | Integer32 (065535)<br>(Integer) | R/W | Размер ICMP пакета для адреса С.<br>х – номер канала (1N)                                                                                            |
| 1.3.6.1.4.1.35160.1.11.1.29.x | powerPingAttempts3.x | Integer32 (065535)<br>(Integer) | R/W | Количество идущих подряд<br>неудачных ICMP запросов, после<br>которого считается, что адрес С не<br>ответил. х – номер канала (1N)                   |
| 1.3.6.1.4.1.35160.1.11.1.30.x | powerPingTimeout3.x  | Integer32 (0255)<br>(Integer)   | R/W | Промежуток времени в единицах<br>0,1с, в течение которого ожидается<br>ответ на ping для адреса С<br>x – номер канала (1N)                           |
| 1.3.6.1.4.1.35160.1.11.1.31.x | powerPingInterval3.x | Integer32 (0255)<br>(Integer)   | R/W | Промежуток времени в единицах<br>0,1с между отправками ICMP<br>запросов для адреса С.<br>х – номер канала (1N)                                       |
| 1.3.6.1.4.1.35160.1.11.1.32.x | powerPingState3.x    | Integer32 (02)<br>(Integer)     | R/W | Текущее состояние адреса С:<br>0 - wait, 1 - OK, 2 - FAIL.<br>х – номер канала (1N)                                                                  |
| 1.3.6.1.4.1.35160.1.11.1.33.x | powerManualReset.x   | Integer32 (0255)<br>(Integer)   | R/W | При записи любого значения в эту переменную происходит сброс (только если Reset time ≠ 0). Считываемое значение не определено. х – номер канала (1N) |

## 8.3 Режим Analog Mode

Режим Analog Mode предназначен для управления питанием нагрузки в зависимости от значения напряжения на выбранном аналоговом входе. Данный режим позволяет, например:

- Включать вентилятор при повышении температуры выше заданного порога
- Включать нагреватель при понижении температуры ниже заданного порога

- Отключать нагрузку от сети питания, если напряжение в сети вышло за пределы заданного диапазона

- Отключать нагрузку при глубокой разрядке аккумулятора

Возможно также множество других применений для режима Analog Mode.

Подробную информацию об аналоговых входах можно найти в разделе *Аналоговые входы* на стр. 23. Для каждого аналогового входа возможно задать два пороговых значения измеряемого параметра: Low limit (нижний порог) и High limit (верхний порог). В свою очередь любой канал управления питанием (PWR1..PWRN) можно связать с любым аналоговым входом и настроить его таким образом, что выходное напряжение будет включено если:

- V < Low limit текущее значение измеряемого параметра меньше нижнего порога
- Low limit <= V <= High limit текущее значение измеряемого параметра находится в диапазоне между нижним и верхним порогом

• V > High limit - текущее значение измеряемого параметра больше верхнего порога

Переключив полярность выходного напряжения (см. раздел Общие настройки, выбор режима, стр. 30), можно изменить логику работы канала на противоположную (включение и выключение нагрузки поменяются местами).

С одним аналоговым входом может быть связано несколько каналов управления питанием, причем в каждом из них независимо могут быть выбраны любые из трех перечисленных выше условий.

#### 8.3.1 WEB интерфейс

#### > Общая информация о режиме Analog Mode находится на стр. 38

Внешний вид страницы настроек канала управления питанием в режиме Analog Mode:

| Ping3                                    | × +                                                                                                                                                                                                                                                                     |                 |              |              |                                 | -             |               | ×           |  |  |  |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|--------------|---------------------------------|---------------|---------------|-------------|--|--|--|
| $\bigcirc \leftrightarrow \rightarrow C$ | 🔿 👌 192.168.2.200/p                                                                                                                                                                                                                                                     |                 |              | ☆            | $\bigtriangledown$ $\checkmark$ | 💾 🖄           | ₹ 🛛           | ≡           |  |  |  |
| Ping3                                    |                                                                                                                                                                                                                                                                         |                 |              |              |                                 |               |               |             |  |  |  |
| System SN                                | MP Power Channels                                                                                                                                                                                                                                                       | Digital Lines   | Analog Lines | Knock Sensor | Power Sens                      | or <u>T</u> o | ools <u>E</u> | <u>Exit</u> |  |  |  |
|                                          | PWR1                                                                                                                                                                                                                                                                    |                 |              | <u>P</u>     | <u>PWR2</u>                     |               |               |             |  |  |  |
| Cł                                       | nannel Name:                                                                                                                                                                                                                                                            |                 |              |              |                                 |               |               |             |  |  |  |
| Ро                                       | Mode: O always ON sitive polarity (1 - power ON):                                                                                                                                                                                                                       | ○ always OFF    | ○ ping mode  | analog mode  |                                 |               |               |             |  |  |  |
|                                          | Traps: 🔲 if turned On                                                                                                                                                                                                                                                   | 🗌 if turned Off |              |              |                                 |               |               |             |  |  |  |
| :                                        | ✓ AN2 < 300.0<br>Power ON if: □ 300.0 <= AN<br>□ AN2 > 700.0                                                                                                                                                                                                            | 2 <= 700.0      |              |              |                                 |               |               |             |  |  |  |
|                                          | <ul> <li>AN1 - ": 968.0=0.0+1023.0*ADC range 0.00.0, hyst=0.0</li> <li>AN2 - ": 500.0=0.0+1023.0*ADC range 300.0700.0, hyst=20.0</li> <li>AN3 - ": 830.0=0.0+1023.0*ADC range 0.00.0, hyst=0.0</li> <li>AN4 - ": 939.0=0.0+1023.0*ADC range 0.00.0, hyst=0.0</li> </ul> |                 |              |              |                                 |               |               |             |  |  |  |
|                                          | State: OFF                                                                                                                                                                                                                                                              | Save            |              | Cancel       |                                 |               |               |             |  |  |  |

Параметры Channel Name, Mode, Positive polarity и Traps общие для всех режимов работы, они описаны в разделе *Общие настройки каналов управления питанием* – *WEB интерфейс* на стр. 30.

Кроме этого задаются следующие параметры:

**Depends on** – выбор аналогового входа, от которого будет зависеть работа данного канала управления питанием. Возле названия каждого из входов (в данном примере AN1..AN4) отображается следующая информация о нем: текстовое имя входа, текущий результат измерения, вычисленный по приведенной рядом формуле пересчета, нижний и верхний порог, гистерезис.

**Power ON if** – выбор условия, при котором будет включено выходное напряжение в данном канале. Возможно три варианта:

#### • AN\* < Low limit

## Equicom \_\_\_\_

- Low limit <= AN\* <= High limit
- AN\* > High limit

Здесь под AN\* надо понимать текущий результат измерения для выбранного аналогового входа, a Low limit и High limit – нижний и верхний пороги, указанные в настройках этого входа. После выбора нового аналогового входа его номер AN\* и параметры Low limit и High limit также изменятся и будут соответствовать вновь выбранному входу.

Изменения параметров сохраняются нажатием кнопки «Save». При выборе аналогового входа сохранять изменения кнопкой «Save» не требуется, это происходит автоматически.

В нижней строке отображается состояние выхода данного канала на момент формирования страницы State (ON/OFF)

### 8.3.2 Telnet

> Общая информация о режиме Analog Mode находится на стр. 38

Войдите в меню настроек нужного канала управления питанием:

### <Главное меню> → → <номер канала>

Если канал работает в режиме Analog Mode, меню его настроек имеет следующий вид:

PWR2, State: OFF Select item: n - name: m - mode: depends on AN2 t - traps: disabled p - output polarity: negative (0 - power ON) f - analog function: ON < 300.0 <= OFF <= 700.0 < OFF c - analog channel: 2 ESC - return

В верхней строке возле названия канала отображается его состояние на момент формирования меню: **ON/OFF** (включен/выключен).

Пункты меню «**n** - **name**», «**m** - **mode**», «**t** - **traps**» и «**p** - **output polarity**» одинаковы для всех режимов работы и подробно описаны в разделе *Общие настройки каналов управления питанием* – *Telnet* на стр. 30

За ними следуют пункты:

**f** - analog function – выбор условия, при котором будет включено выходное напряжение в данном канале. При входе открывает подменю выбора:

Change value ON<->OFF: Select item: 1 - ON if AN1 < 300.0 n - OFF if 300.0 <= AN2 <= 700.0 h - OFF if AN1 > 700.0 ESC - return

Пункты данного подменю работают в триггерном режиме и позволяют управлять включением выходного напряжения в любом из трех случаев:

- AN\* < Low limit
- Low limit <= AN\* <= High limit
- AN\* > High limit

Здесь под **AN**\* надо понимать текущий результат измерения для выбранного аналогового входа, а **Low limit** и **High limit** – нижний и верхний пороги, указанные в настройках этого входа. Напротив каждого пункта данного подменю отображаются неравенства, в которых номер аналогового входа **AN**\* и параметры **Low limit** и **High limit** соответствуют выбранному входу.

**c** - analog channel – выбор аналогового входа, от которого будет зависеть работа данного канала управления питанием. Возле пункта меню отображается номер выбранного входа. При входе в данный пункт открывается подменю выбора:

PWR1: analog channel select
Select item:
1 - AN1: ": 972.0=0.0+1023.0\*ADC range 300.0...700.0, hyst=20.0,
2 - AN2: ": 531.0=0.0+1023.0\*ADC range 300.0...700.0, hyst=20.0 Depended power channels: PWR2
3 - AN3: ": 852.0=0.0+1023.0\*ADC range 0.0...0, hyst=0.0
4 - AN4: ": 946.0=0.0+1023.0\*ADC range 0.0...0, hyst=0.0
ESC - return

Пункты 1..4 данного подменю позволяют выбрать один из четырех аналоговых входов (в данном примере устройство имеет 4 аналоговых входа). Возле каждого пункта отображается следующая информация о соответствующем входе: текстовое имя, текущий результат измерения, вычисленный по приведенной рядом формуле пересчета, нижний и верхний порог, гистерезис, перечень каналов управления питанием, связанных с данным входом.

### 8.3.3 SNMP

> Общая информация о режиме Analog Mode находится на стр. 38

Список OID, отвечающих за настройки каналов управления питанием в режиме Analog Mode (N – количество каналов в устройстве; подробнее о протоколе SNMP см. в разделе *Реализация протокола SNMP*, стр. 13):

| OID                          | Имя переменной    | Тип данных                  | Доступ | Описание                                                                                                              |
|------------------------------|-------------------|-----------------------------|--------|-----------------------------------------------------------------------------------------------------------------------|
| 1.3.6.1.4.1.35160.1.11.1.3.x | powerAnalogLine.x | Integer32 (14)<br>(Integer) | R/W    | Номер аналогового входа, связанного<br>с данным каналом:<br>1-AN1, 2-AN2, и т.д.<br>х – номер канала (1N)             |
| 1.3.6.1.4.1.35160.1.11.1.5.x | powerOnHigh.x     | Integer32 (01)<br>(Integer) | R/W    | Включение выходного напряжения<br>при V>High limit: 1-разрешено,<br>0-запрещено. х – номер канала (1N)                |
| 1.3.6.1.4.1.35160.1.11.1.6.x | powerOnInRange.x  | Integer32 (01)<br>(Integer) | R/W    | Включение выходного напряжения<br>при Low limit<=V<=High limit:<br>1-разрешено, 0-запрещено.<br>х – номер канала (1N) |
| 1.3.6.1.4.1.35160.1.11.1.7.x | powerOnLow.x      | Integer32 (01)<br>(Integer) | R/W    | Включение выходного напряжения<br>при V < Low limit: 1-разрешено,<br>0-запрещено. х – номер канала (1N)               |

## Equicom \_\_\_\_

### 9 Вход Power Sensor – контроль наличия напряжения в сети

Вход Power Sensor предназначен для контроля наличия напряжения в питающей сети. Полярность сигнала не имеет значения – имеется возможность настроить вход так, что он будет реагировать как на положительный, так и на отрицательный уровень входного сигнала. Смотрите рекомендации по установке полярности в документации к конкретной модели устройства.

Для входа задается параметр Power holding time в диапазоне 0..2,55с – время, в течение которого новое состояние входного сигнала должно оставаться неизменным, чтобы оно было зафиксировано. Любые изменения с меньшей длительностью будут игнорироваться. Это позволяет отфильтровать кратковременные изменения уровня входного сигнала, вызванные помехами или скачками напряжения в сети, приводящими к ложному срабатыванию датчика.

Возможна отправка Trap сообщений при пропадании и при появлении напряжения в сети (настраивается независимо). Подробности о Trap сообщениях см. в разделе *Trap* сообщения, стр. 13.

### 9.1 Web интерфейс

#### > Общая информация о входе Power Sensor находится на стр. 42

Настройки входа Power Sensor находятся в пункте «Power Sensor» верхней строки меню:

| Ping3                                      |               | × +                                         |                             |              |              |              | -            |      |  |  |
|--------------------------------------------|---------------|---------------------------------------------|-----------------------------|--------------|--------------|--------------|--------------|------|--|--|
| $\widehat{\ } \leftrightarrow \rightarrow$ | C O X         | A 192.168.2.200/g                           |                             |              | ☆            | ⊘ ⊻ 🖺        | 全 🌻          | 🔮 ≡  |  |  |
| Ping3                                      |               |                                             |                             |              |              |              |              |      |  |  |
| System                                     | <u>SNMP</u>   | Power Channels                              | Digital Lines               | Analog Lines | Knock Sensor | Power Sensor | <u>Tools</u> | Exit |  |  |
|                                            | Power is GOOD |                                             |                             |              |              |              |              |      |  |  |
| F                                          | ower holding  | time: 0.10 sec (02.5<br>Traps: if power bec | 5)<br>omes bad<br>omes good |              |              |              |              |      |  |  |
|                                            | Positive p    | oolarity (1 - power GOC                     | DD): 🗆                      |              |              |              |              |      |  |  |
|                                            |               |                                             | Save                        |              | Cancel       |              |              |      |  |  |

В верхней части страницы отображается текущее состояние входа: **Power is GOOD** (питание в сети присутствует) или **Power is BAD** (питание в сети отсутствует).

Ниже задается параметр Power holding time и условия отправки Trap сообщений:

if power becomes bad – при пропадании напряжения в сети if power becomes good – при появлении напряжения в сети

Признак **Positive polarity** устанавливает положительную полярность входного сигнала. Если этот признак установлен, то уровень логической 1 на входе Power Sensor соответствует наличию напряжения в сети. Если признак не установлен, то наличию напряжения в сети соответствует уровень логического 0.

### 9.2 Telnet

> Общая информация о входе Power Sensor находится на стр. 42

Настройки входа Power Sensor находятся в пункте «g - Power Sensor» основного меню. Меню настроек выглядит следующим образом:

Power Sensor Input settings. Power is GOOD Select item: h - power holding time: 0.10s b - trap if power becomes bad: disabled g - trap if power becomes good: disabled p - input polarity: positive (1 - power GOOD) ESC - return

В заголовке меню отображается текущее состояние входа: Power is GOOD (питание в сети присутствует) или Power is BAD (питание в сети отсутствует).

Первый пункт меню **h** - power holding time служит для задания времени реакции на кратковременные изменения уровня входного сигнала.

Каждый из последующих пунктов меню работает в триггерном режиме. Назначение пунктов:

**b** - trap if power becomes bad – позволяет включить/выключить отправку SNMP трапов при пропадании напряжения в сети

**b** - trap if power becomes good – позволяет включить/выключить отправку SNMP трапов при появлении напряжения в сети

**p** - input polarity – управляет полярностью входного сигнала. Если установлена, положительная полярность, то уровень логической 1 на входе Power Sensor соответствует наличию напряжения в сети. Если отрицательная, то наличию напряжения в сети соответствует уровень логического 0. Рядом с названием пункта отображается текущая полярность сигнала.

### 9.3 SNMP

> Общая информация о входе Power Sensor находится на стр. 42

Список OID, отвечающих за настройки входа Power Sensor (подробнее о протоколе SNMP см. в разделе *Реализация протокола SNMP*, стр. 13):

| OID                      | Имя переменной      | Тип данных                    | Доступ | Описание                                                                                                           |
|--------------------------|---------------------|-------------------------------|--------|--------------------------------------------------------------------------------------------------------------------|
| 1.3.6.1.4.1.35160.1.23.0 | powerSensorBadTrap  | Integer32 (01)<br>(Integer)   | R/W    | Управление Trap сообщениями при<br>пропадании напряжения в сети.<br>1-отправка сообщений включена,<br>0-выключена. |
| 1.3.6.1.4.1.35160.1.24.0 | powerSensorGoodTrap | Integer32 (01)<br>(Integer)   | R/W    | Управление Trap сообщениями при<br>появлении напряжения в сети.<br>1-отправка сообщений включена,<br>0-выключена.  |
| 1.3.6.1.4.1.35160.1.25.0 | powerSensorPolarity | Integer32 (01)<br>(Integer)   | R/W    | Полярность входного сигнала:<br>1-положительная, 0-отрицательная                                                   |
| 1.3.6.1.4.1.35160.1.26.0 | powerSensorState    | Integer32 (01)<br>(Integer)   | R      | Текущее состояние входа:<br>1-питание в сети присутствует,<br>0-питание в сети отсутствует                         |
| 1.3.6.1.4.1.35160.1.27.0 | powerSensorTime     | Integer32 (0255)<br>(Integer) | R/W    | Время реакции на кратковременные изменения уровня входного сигнала в единицах 0,01с.                               |

## Equicom \_\_\_\_

### 10 Датчик удара (knock-сенсор)

Наличие датчика удара и его конструкция зависят от конкретной модели устройства. При каждом срабатывании датчика формируется электрический импульс, который поступает на вход микроконтроллера устройства PING3. Одновременно с этим зажигается светодиод «Knock», индицирующий срабатывание датчика.

Параметр Knock holding time (время удержания датчика удара, 0..25,5 с) определяет, как долго датчик удара будет считаться сработавшим после окончания ударного воздействия на него. Если случайные срабатывания датчика происходят через интервалы времени меньшие, чем Knock holding time, то каждое следующие срабатывание продлевает «сработавшее» состояние датчика еще на время Knock holding time. На время включения светодиода «Knock» это никак не влияет, оно зависит только от продолжительности ударного воздействия на датчик.

Данный параметр предназначен для того, чтобы исключить многократное информирование о кратковременных срабатываниях датчика удара. Вместо этого будет зафиксировано начало и конец срабатывания, в течение которого фактически могло происходить большое количество кратковременных ударных воздействий на датчик.

Возможна отправка Trap сообщений в начале и в конце срабатывания датчика удара (настраивается независимо). Подробности о Trap сообщениях см. в разделе *Trap* сообщения, стр. 13.

### 10.1 Web интерфейс

#### > Общая информация о датчике удара находится на стр. 44

Настройки датчика удара находятся в пункте «Knock Sensor» верхней строки меню:

|             | Ping3                                                                                |             | × +             |               |              |                     |              | -            | o x  |
|-------------|--------------------------------------------------------------------------------------|-------------|-----------------|---------------|--------------|---------------------|--------------|--------------|------|
| ۵           | $\leftarrow \   \rightarrow$                                                         | C () 8      | 192.168.2.200/k |               |              | ☆                   | ♡ ± 🖱        | 金 🌻          | ≡ 🔇  |
| P           | ing3                                                                                 |             |                 |               |              |                     |              |              |      |
| <u>s</u>    | <u>ystem</u>                                                                         | <u>SNMP</u> | Power Channels  | Digital Lines | Analog Lines | <u>Knock Sensor</u> | Power Sensor | <u>Tools</u> | Exit |
|             |                                                                                      |             | Knock Sensor is | in no alarm   |              |                     |              |              |      |
|             | Knock holding time: 5.0 sec (025.5)<br>Traps:  if alarm is occured if alarm is ended |             |                 |               |              |                     |              |              |      |
| Save Cancel |                                                                                      |             |                 |               |              |                     |              |              |      |

В верхней части страницы отображается текущее состояние датчика:

Knock Sensor is in no alarm – датчик находится в состоянии покоя Knock Sensor is in ALARM – датчик сработал

Ниже имеется возможность изменить параметр Knock holding time и задать условия отправки Trap сообщений:

if alarm is occured – в момент начала срабатывания датчика if alarm is ended – по окончании срабатывания датчика

### 10.2 Telnet

> Общая информация о датчике удара находится на стр. 44

Настройки датчика удара находятся в пункте «k - Knock Sensor» основного меню. Меню настроек выглядит следующим образом:

Knock Sensor settings. Knock Sensor is in no alarm Select item: h - knock holding time: 5.0s a - trap if alarm is occured: disabled d - trap if alarm is ended: disabled ESC - return

В заголовке меню отображается текущее состояние датчика: Knock Sensor is in no alarm (датчик находится в состоянии покоя) или Knock Sensor is in ALARM (датчик сработал).

Назначение пунктов меню:

h - knock holding time – изменение параметра «время удержания датчика удара»

Следующие два пункта работают в триггерном режиме и позволяют включить/выключить отправку Тгар сообщений:

а - trap if alarm is occured – в момент начала срабатывания датчика

d - trap if alarm is ended – по окончании срабатывания датчика

### 10.3 SNMP

> Общая информация о датчике удара находится на стр. 44

Список OID, отвечающих за настройки датчика удара (подробнее о протоколе SNMP см. в разделе *Реализация протокола SNMP*, стр. 13):

| OID                      | Имя переменной    | Тип данных                    | Доступ | Описание                                                                                                                  |
|--------------------------|-------------------|-------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------|
| 1.3.6.1.4.1.35160.1.19.0 | knockTime         | Integer32 (0255)<br>(Integer) | R/W    | Время удержания датчика удара в единицах 0,1с.                                                                            |
| 1.3.6.1.4.1.35160.1.20.0 | knockTrapAlarm    | Integer32 (01)<br>(Integer)   | R/W    | Управление Trap сообщениями при<br>срабатывании датчика удара.<br>1-отправка сообщений включена,<br>0-выключена.          |
| 1.3.6.1.4.1.35160.1.21.0 | knockTrapDisalarm | Integer32 (01)<br>(Integer)   | R/W    | Управление Trap сообщениями по<br>окончании срабатывания датчика<br>удара. 1-отправка сообщений<br>включена, 0-выключена. |
| 1.3.6.1.4.1.35160.1.22.0 | knockState        | Integer32 (01)<br>(Integer)   | R      | Текущее состояние датчика удара:<br>0-датчик находится в состоянии<br>покоя, 1-датчик сработал.                           |

## Equicom \_\_\_\_

### 11 Вспомогательные функции

Большинство вспомогательных функций устройства PING3 доступно через меню «Tools», которое можно открыть как при доступе через WEB интерфейс, так и по протоколу Telnet.

### 11.1 Общий вид меню «Tools»

### 11.1.1 WEB интерфейс

Управление вспомогательными функциями устройства находится в пункте «Tools» верхней строки меню:

| Ping3                                                                                                   | × +                                    |                      |              |              |                            | -            |       |
|---------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|--------------|--------------|----------------------------|--------------|-------|
| $\textcircled{\ } \leftrightarrow \rightarrow \ \textcircled{\ } \bigcirc \ \fbox{\ } \bigtriangledown$ | 192.168.2.200/t                        |                      |              | ☆            | $\boxtimes$ $\blacksquare$ | 💾 🏠 🎙        | ♦ 🐠 🗏 |
| Ping3                                                                                                   |                                        |                      |              |              |                            |              |       |
| System SNMP                                                                                             | Power Channels                         | Digital Lines        | Analog Lines | Knock Sensor | Power Sensor               | <u>Tools</u> | Exit  |
| Ping<br>Ping s                                                                                          | g IP: 192.168.2.2<br>size: 64 bytes (( | )65535)<br>Send ping |              | Cancel       |                            |              |       |
| Rel<br>Restore factory sett<br>Save sett<br>Load sett                                                   | boot<br>tings<br>tings)<br>Обзор Файл  | не выбран.           |              |              |                            |              |       |

На данной странице доступны следующие функции: ручная отправка ICMP запросов, перезагрузка устройства, восстановление заводских настроек, сохранение настроек в файл конфигурации и загрузка из файла. Все функции описаны в соответствующих пунктах этой главы.

### 11.1.2 Telnet

Управление вспомогательными функциями устройства находится в пункте «t - Tools» основного меню. Меню «Tools» выглядит следующим образом:

Tools Select item: p - send ping r - reboot d - restore factory settings u - upgrade firmware ESC - return

Из данного меню доступны следующие функции: ручная отправка ICMP запросов, перезагрузка устройства, восстановление заводских настроек и обновление встроенного ПО (firmware). Все функции описаны в соответствующих пунктах этой главы.

### 11.2 Ручная отправка ІСМР запросов

Имеется возможность ручной отправки ICMP запросов (ping) по заданному IP адресу. Если адрес находится в подсети, отличной от подсети устройства PING3, пакеты для него будут отправляться через шлюз, заданный в системных настройках. Можно задать размер ICMP пакетов в пределах 0..65535 байт, при этом поддерживается фрагментация пакетов. Пакет нулевой длины (длина поля данных равна нулю) также отправляется (в отличие от автоматической отправки пингов в режиме каналов управления питанием Ping Mode, где пакеты нулевой длины не отправляются).

#### 11.2.1 WEB интерфейс

В общем меню «Tools» необходимо задать IP адрес в поле ввода **Ping IP** и размер пакета в поле **Ping size**. После нажатия кнопки «Send ping» начинается отправка пингов с отображением результатов в окне браузера:

|                                              | Ping3 × +                    |                                                                                                                                                                                                                 |   |                    |              | - 0 |   |   | × |   |
|----------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------|--------------|-----|---|---|---|---|
| ۵                                            | $\leftarrow \   \rightarrow$ | C 🗘 👌 192.168.2.200/P?4&4&C&8&1&7&202A8C0&40&C8&A&A9&1C&BD&BF&                                                                                                                                                  | ☆ | $\bigtriangledown$ | $\checkmark$ |     | 岔 | ₽ | ٩ | ≡ |
| Stop<br>Ping<br>icmp<br>icmp<br>icmp<br>icmp | to 192.168                   | 2.2: 5 sent, 5 received, 0% loss, time 10s, min/avg/max=1/3/7ms<br>bytes from 192.168.2.2, time=1ms<br>bytes from 192.168.2.2, time=2ms<br>bytes from 192.168.2.2, time=2ms<br>bytes from 192.168.2.2, time=2ms |   |                    |              |     |   |   |   |   |

В верхней части страницы имеется кнопка «Stop», при помощи которой в любой момент можно остановить процесс и повторным нажатием вернуться к предыдущей странице. Ниже отображается адрес назначения для ICMP запросов, количество отправленных и принятых пакетов, процент потерянных пакетов по отношению к общему количеству отправленных, время с момента запуска процесса в секундах и минимальное/среднее/максимальное время отклика в миллисекундах.

Отправка каждого ICMP запроса сопровождается выводом на экран одной строки, в которой содержится номер отправленного запроса, размер пакета, адрес назначения и время отклика в случае успешного получения ответа на запрос, либо сообщение о таймауте в случае отсутствия ответа. Максимальное время ожидания ответа на каждый запрос в данном режиме составляет 4 с.

#### 11.2.2 Telnet

В общем меню «Tools» необходимо войти в пункт «**p** - send ping», появится запрос ввода IP адреса и длины пакета. После ввода необходимых параметров начнется отправка пингов с отображением результатов в окне Telnet клиента:

New IP: 192.168.2.2 New Size (0 - 65535): 100 Press any key to exit... 100 bytes from 192.168.2.2: icmp\_seq=1 time=2ms 100 bytes from 192.168.2.2: icmp\_seq=2 time=1ms 100 bytes from 192.168.2.2: icmp\_seq=3 time=1ms

## Equicom \_\_\_\_\_

100 bytes from 192.168.2.2: icmp\_seq=4 time=1ms 100 bytes from 192.168.2.2: icmp\_seq=5 time=2ms 100 bytes from 192.168.2.2: icmp\_seq=6 time=2ms 6 sent, 6 received, 0% loss, time 5s, min/avg/max=1/2/2ms

Отправка каждого ICMP запроса сопровождается выводом на экран одной строки, в которой содержится размер пакета, адрес назначения, номер отправленного запроса и время отклика в случае успешного получения ответа на запрос, либо сообщение о таймауте в случае отсутствия ответа. Максимальное время ожидания ответа на каждый запрос в данном режиме составляет 4 с.

Остановить процесс можно нажатием любой клавиши. После прекращения отправки запросов будет напечатана строка, содержащая количество отправленных и принятых пакетов, процент потерянных пакетов по отношению к общему количеству отправленных, общее время процесса в секундах и минимальное/среднее/максимальное время отклика в миллисекундах.

### 11.3 Перезагрузка устройства

Обратите внимание на особое поведение цифровых линий ввода/вывода (стр. 18) и каналов управления питанием (стр. 29) в процессе перезагрузки.

### 11.3.1 WEB интерфейс

Через **WEB интерфейс** перезагрузка устройства производится при помощи кнопки «Reboot», находящейя в общем меню «Tools». После нажатия на кнопку будет выдан запрос подтверждения, после утвердительного ответа начнется перезагрузка с обратным отсчетом времени на экране.

### 11.3.2 Telnet

Через **Telnet** перезагрузка устройства производится при помощи пункта «**r** - **reboot**», находящегося в меню «Tools». После входа в этот пункт будет выдан запрос подтверждения, после утвердительного ответа Telnet сессия будет завершена и начнется перезагрузка устройства.

### 11.3.3 SNMP

Для перезагрузки устройства при помощи протокола SNMP предназначена переменная deviceReset, OID=.1.3.6.1.4.1.35160.1.31.0 (описана в разделе *Системные настройки*, стр.11). При записи любого значения в эту переменную происходит перезагрузка устройства.

### 11.4 Восстановление заводских настроек

При восстановлении заводских настроек значения некоторых параметров будут зависеть от конкретной модели устройства.

Процесс восстановления всегда заканчивается перезагрузкой устройства. Обратите внимание на особое поведение цифровых линий ввода/вывода (стр. 18) и каналов управления питанием (стр. 29) в процессе перезагрузки.

### 11.4.1 WEB интерфейс

Через **WEB интерфейс** восстановление заводских настроек производится при помощи кнопки «Restore factory settings», находящейся в общем меню «Tools». После нажатия на кнопку будет выдан запрос подтверждения, после утвердительного ответа начнется процесс восстановления настроек и перезагрузки с обратным отсчетом времени на экране.

### 11.4.2 Telnet

Через **Telnet** восстановление заводских настроек производится при помощи пункта «d - restore factory settings», находящегося в меню «Tools». После входа этот пункт будет выдан запрос подтверждения, после утвердительного ответа Telnet сессия будет завершена и начнется процесс восстановления настроек и перезагрузки устройства.

#### 11.4.3 Процедура восстановления заводских настроек при помощи кнопки «Reset»

Данная процедура необходима в следующих случаях:

- Утеря пароля учетной записи администратора
- Отсутствие информации о текущем IP адресе устройства или о настройках тегов IEEE 802.1Q VLAN

Расположение кнопки «Reset» зависит от модели устройства (см. документацию к конкретной модели). Для сброса всех настроек к значениям по умолчанию необходимо отключить питание устройства, нажать кнопку «Reset» и, не отпуская ее, включить питание устройства. Желтый светодиод «Link», расположенный с правой стороны на розетке «LAN», загорится и будет оставаться включенным на протяжении 2 с – это время, необходимое для инициализации процесса восстановления настроек. После выключения светодиода кнопку «Reset» нужно отпустить. В момент выключения светодиода начинается процесс восстановления заводских настроек, его продолжительность составляет примерно 12 с. Не отключайте питание устройства до окончания процесса! По окончании восстановления настроек автоматически произойдет перезагрузка устройства, после чего оно снова будет готово к работе.

#### Замечание1

Если отпустить кнопку «Reset» до выключения светодиода, процесс восстановления настроек не будет запущен. В этом случае необходимо отключить питание устройства и повторить процедуру с начала.

#### Замечание2

Если вследствие неудачного обновления firmware оказалась разрушена текущая прошивка устройства, при включении оно всегда будет попадать в режим загрузчика firmware (подробнее см. в разделе Обновление firmware, стр. 51). В таком состоянии тоже можно восстановить заводские настройки устройства, но при этом восстановлены будут только МАС адрес, IP адрес, маска подсети, шлюз, признак включения тегов IEEE 802.1Q VLAN и пароль учетной записи admin. Значения остальных параметров останутся не определенными, поэтому впоследствии, после успешного обновления firmware, необходимо будет еще раз произвести восстановление заводских настроек при помощи кнопки «Reset» или через интерфейс пользователя.

## Equicom \_\_\_\_

### 11.5 Сохранение настроек в файл конфигурации и загрузка из файла

Данная возможность может быть полезна для создания резервной копии настроек, а также для переноса идентичных настроек в любое количество устройств PING3.

Работа с файлом конфигурации возможна только при администрировании устройства через WEB интерфейс. Создание и загрузка файла конфигурации производится при помощи кнопок «Save settings» и «Load settings» соответственно, находящихся в общем меню «Tools».

При нажатии кнопки «Save settings» происходит запрос имени файла (по умолчанию ping3.cfg) и места его сохранения.

Файл конфигурации имеет текстовый формат и при необходимости может быть отредактирован вручную. Каждая строка файла содержит имя одного параметра и соответствующее ему значение. Если первым символом строки является «;», то такая строка считается комментарием и не обрабатывается при загрузке файла. В конце файла находится строка с параметром END (признак окончания данных).

Обратите внимание: пароли учетных записей и строки community сохраняются в незашифрованном виде!

Параметр «МАС адрес устройства» сохраняется как комментарий, поэтому при загрузке файла он обработан не будет. Это сделано специально для того, чтобы случайно не сконфигурировать несколько устройств с одинаковыми МАС адресами. Если все же необходимо, чтобы данный параметр был загружен из файла конфигурации, символ комментария «;» в начале соответствующей строки надо удалить вручную.

При ручном редактировании файла конфигурации необходимо учитывать следующее:

- Лишние пробелы не допускаются, каждый пробел будет воспринят как часть имени или значения параметра
- Никакие посторонние символы не допускаются
- Регистр символов в названиях параметров принципиально важен
- В конце каждой строки должны быть символы 0x0D 0x0A
- Порядок следования параметров в файле не играет роли, все они будут загружены последовательно
- Файл конфигурации может содержать неполный набор параметров в этом случае будут загружены только те параметры, которые содержатся в нем
- Все строки после параметра END будут проигнорированы при загрузке файла

Для загрузки настроек необходимо выбрать файл конфигурации при помощи кнопки выбора файла (ее вид может отличаться в зависимости от используемого браузера). Загрузка настроек начинается при нажатии кнопки «Load settings».

Файл конфигурации загружается построчно, по окончании загрузки результат можно увидеть в окне браузера. Если в процессе загрузки будет обнаружен ошибочный параметр, загрузка будет остановлена с соответствующим сообщением об ошибке. При этом все предшествующие верные параметры будут загружены.

По окончании загрузки файла необходимо нажать кнопку «Reboot», появившуюся в окне браузера. Начнется перезагрузка устройства с обратным отсчетом времени на экране. Все загруженные настройки вступят в силу после перезагрузки устройства.

Если не перезагрузить устройство сразу после загрузки файла конфигурации, в дальнейшем оно может работать не корректно.

### 11.6 Обновление встроенного ПО (firmware)

Внимание! При обновлении firmware с любой из версий 1.xx до версии 2.xx используется нестандартная процедура, читайте *инструкцию* на стр. 52.

#### 11.6.1 Процедура обновления firmware

Удаленное обновление firmware возможно только по протоколу Telnet (обратите внимание на таблицу совместимости с некоторыми Telnet клиентами на стр. 7). В общем меню «Tools» необходимо войти в пункт «u - upgrade firmware», на экране появится запрос подтверждения:

Press 'Y', then run telnet again to enter to the firmware loader:

(«Нажмите Y, после чего снова запустите Telnet, чтобы попасть в загрузчик firmware»).

После нажатия клавиши «Y» Telnet сессия закроется и произойдет перезагрузка устройства в режиме загрузчика firmware (в этом режиме доступ к устройству через WEB интерфейс невозможен). Снова подключитесь к устройству при помощи Telnet клиента, на экране появится приглашение:

Ping3 firmware loader 'admin' password:

В ответ необходимо ввести пароль администратора и нажать <Enter>. На экране появится следующая информация:

Ping3 s/n: 011100001, ver.\*.\*\* - 20\*\*/\*\*/\*\*

Paste ping3.frm file (to upgrade firmware) or netloader2.frm file (to upgrade netloader). Press \$ to exit -->

В первой строке отображается серийный номер устройства, номер версии и дата разработки текущей версии firmware, загруженной в устройство. Во второй строке предлагается загрузить в устройство файл «ping3.frm», содержащий новую версию firmware, либо файл «netloader2.frm», содержащий вспомогательную прошивку «netloader replacer», предназначенную для обновления компонента «firmware loader». Для выхода из данного режима необходимо набрать на клавиатуре символ «\$».

- Все обновления встроенного ПО для устройства PING3 представляют собой ASCII файлы с расширением .frm Обновление firmware называется ping3.frm, последняя версия firmware всегда доступна для скачивания на сайте www.equicom.ua. Рекомендуем всегда использовать последнюю версию firmware.
- Возможно также обновить и сам firmware loader (или netloader) автономный программный модуль, предназначенный для обновления firmware, именно работа с ним описана в данной главе. Это необходимо в случаях, когда обновленная версия firmware имеет формат файлов .frm, не совместимый с текущим, в частности, при обновлении с любой из версий 1.xx до версии 2.xx – см. *инструкцию* на стр. 52. Для обновления компонента «firmware loader» предназначена вспомогательная прошивка «netloader replacer» – файл «netloader2.frm», который поставляется в составе пакета обновления.

Загрузка файла в устройство выполняется при помощи команды «paste» Telnet клиента (либо команды «Send text file», доступна не во всех клиентах). Необходимо скопировать содержимое файла .frm в буфер обмена и выполнить команду «paste», находясь в активном окне Telnet клиента (например, в клиенте Putty под Windows для этого достаточно нажать

## Equicom \_\_\_\_

правую кнопку мыши). Немедленно начнется процесс передачи и одновременной прошивки новой версии firmware в постоянную память устройства. Удачная запись каждого очередного блока данных сопровождается печатью точки на экране. После удачного завершения процесса на экране появятся сообщения:

FLASH write OK

End of .frm file

Press any key to reboot...

После нажатия любой клавиши произойдет перезагрузка устройства, после чего оно будет готово к работе уже с обновленной версией firmware.

Если в процессе обновления прошивки произошел сбой (разорвалась связь, отключилось питание и т.д.), процесс останется не завершенным. В этом случае необходимо повторить процедуру обновления firmware заново. После разрыва связи в большинстве случаев сразу подключиться к устройству не удастся, т.к. последняя Telnet сессия не была корректно завершена. Необходимо подождать 2 минуты, пока сессия завершится по таймауту – после этого Telnet подключение снова станет доступно.

Если в процессе загрузки файла появится одно из сообщений «Wrong first page» или «CRC is wrong» (чаще всего это бывает при попытке загрузить в устройство испорченный или несовместимый файл обновления), процесс загрузки будет остановлен. Чтобы не дожидаться таймаута, для завершения Telnet сессии достаточно набрать на клавиатуре символ «\$».

В случае возникновения сбоя в процессе обновления прошивки предыдущая версия firmware окажется частично затерта новой, поэтому начальный загрузчик устройства не обнаружит в памяти работоспособной версии firmware, и вместо нее всегда будет запускаться firmware loader. При его запуске вместо номера текущей версии firmware будет выводиться сообщение:

Ping3 - no firmware found

Дальнейшие действия по обновлению прошивки ничем не отличаются от описанных выше.

Обратите внимание на особое поведение цифровых линий ввода/вывода (стр. 18) и каналов управления питанием (стр. 29) при обновлении прошивки (при работе в режиме загрузчика firmware). Довольно типична ситуация, когда связь с устройством PING3 осуществляется через коммутатор, подача питания на который управляется одним из каналов PWR. Убедитесь, что при запуске загрузчика firmware (когда выход канала PWR перейдет в высокоимпедансное состояние) питание коммутатора останется включенным – это зависит от аппаратной реализации конкретного устройства серии PING3. В противном случае связь с устройством будет потеряна, и удаленное обновление прошивки в такой ситуации будет невозможно.

### 11.6.2 Инструкция по обновлению firmware с любой из версий 1.xx до версии 2.xx

### > Процедура обновления firmware описана на стр. 51.

При обновлении firmware с любой из версий 1.xx до версии 2.xx требуется обязательное обновление компонента firmware loader (netloader). Это связано с тем, что firmware loader от версий 1.xx не имеет поддержки тегов IEEE 802.1Q VLAN, поэтому не может корректно работать с версиями 2.xx. Формат файлов .frm версий 2.xx не совместим с форматом версий 1.xx. Откат с версий 2.xx к версиям 1.xx невозможен.

## . Equicom

Для выполнения обновления понадобятся файлы «netloader2\_v1.xx\_to\_v2.xx.frm» и «netloader\_v2.xx.frm», которые доступны для загрузки на сайте www.equicom.ua.

Порядок действий следующий.

1. Загрузить вспомогательную прошивку «netloader replacer» – файл «netloader2\_v1.xx\_to\_v2.xx.frm»

Войдите в режим загрузчика firmware и введите пароль администратора, как описано выше. На экране должно появиться сообщение:

Paste ping3.frm file (to upgrade firmware) or netloader2.frm file (to upgrade netloader). Press \$ to exit -->

Скопируйте в буфер обмена содержимое файла «netloader2\_v1.xx\_to\_v2.xx.frm» и загрузите его в устройство при помощи команды «paste» Telnet клиента. После успешного завершения нажмите любую клавишу для перезагрузки.

2. Загрузить обновленный firmware loader – файл «netloader\_v2.xx.frm»

Снова подключитесь к устройству при помощи Telnet клиента. На экране должно появиться приглашение:

Ping3 loader replacer 'admin' password:

В ответ необходимо ввести пароль администратора и нажать <Enter>. На экране появится следующая информация:

Ping3 - no firmware found

Paste netloader.frm file. Press \$ to exit -->

Скопируйте в буфер обмена содержимое файла «netloader\_v2.xx.frm» и загрузите его в устройство при помощи команды «paste» Telnet клиента. После успешного завершения нажмите любую клавишу для перезагрузки.

3. Загрузить собственно обновление firmware v2.xx

Снова подключитесь к устройству при помощи Telnet клиента. На экране должно появиться приглашение:

Ping3 firmware loader 'admin' password:

Дальнейшие действия соответствуют стандартной процедуре обновления firmware.

### 12 Гарантийные обязательства

Производитель дает ограниченную гарантию на встроенное программное обеспечение устройства. В случае обнаружения любых ошибок в ПО, которые стали известны производителю самостоятельно или по информации от клиента, производитель обязуется в течение разумного времени исправить данные ошибки и предоставить клиенту обновления. К ошибкам, подлежащим обязательному исправлению, относятся только такие ошибки, которые препятствуют нормальному использованию устройства для выполнения функций, описанных в данном руководстве.